ﻻ يوجد ملخص باللغة العربية
We engineer planar Ge/SiGe heterostructures for low disorder and quiet hole quantum dot operation by positioning the strained Ge channel 55~nm below the semiconductor/dielectric interface. In heterostructure field effect transistors, we measure a percolation density for two-dimensional hole transport of $2.1times10^{10}~text{cm}^{-2}$, indicative of a very low disorder potential landscape experienced by holes in the buried Ge channel. These Ge heterostructures support quiet operation of hole quantum dots and we measure charge noise levels that are below the detection limit $sqrt{S_text{E}}=0.2~mu text{eV}/sqrt{text{Hz}}$ at 1 Hz. These results establish planar Ge as a promising platform for scaled two-dimensional spin qubit arrays.
Solid-state qubits incorporating quantum dots can be read out by gate reflectometry. Here, we theoretically describe physical mechanisms that render such reflectometry-based readout schemes imperfect. We discuss charge qubits, singlet-triplet spin qu
The promise of quantum computation with quantum dots has stimulated widespread research. Still, a platform that can combine excellent control with fast and high-fidelity operation is absent. Here, we show single and two-qubit operations based on hole
Single-charge pumps are the main candidates for quantum-based standards of the unit ampere because they can generate accurate and quantized electric currents. In order to approach the metrological requirements in terms of both accuracy and speed of o
The possibility of quantum computing with spins in germanium nanoscale transistors has recently attracted interest since it promises highly tuneable qubits that have encouraging coherence times. We here present the first complete theory of the orbita
The valley degree of freedom presents challenges and opportunities for silicon spin qubits. An important consideration for singlet-triplet states is the presence of two distinct triplets, comprised of valley vs. orbital excitations. Here we show that