ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-Axis Measurement and Cancellation of Background Magnetic Fields to less than 50 uG in a Cold Atom Experiment

62   0   0.0 ( 0 )
 نشر من قبل Aaron Smith
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Many experiments involving cold and ultracold atomic gases require very precise control of magnetic fields that couple to and drive the atomic spins. Examples include quantum control of atomic spins, quantum control and quantum simulation in optical lattices, and studies of spinor Bose condensates. This makes accurate cancellation of the (generally time dependent) background magnetic field a critical factor in such experiments. We describe a technique that uses the atomic spins themselves to measure DC and AC components of the background field independently along three orthogonal axes, with a resolution of a few tens of uG in a bandwidth of ~1 kHz. Once measured, the background field can be cancelled with three pairs of compensating coils driven by arbitrary waveform generators. In our laboratory, the magnetic field environment is sufficiently stable for the procedure to reduce the field along each axis to less than ~50 uG rms, corresponding to a suppression of the AC part by about one order of magnitude. This suggests our approach can provide access to a new low-field regime in cold-atom experiments.


قيم البحث

اقرأ أيضاً

We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are success ively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.
We employ an evolutionary algorithm to automatically optimize different stages of a cold atom experiment without human intervention. This approach closes the loop between computer based experimental control systems and automatic real time analysis an d can be applied to a wide range of experimental situations. The genetic algorithm quickly and reliably converges to the most performing parameter set independent of the starting population. Especially in many-dimensional or connected parameter spaces the automatic optimization outperforms a manual search.
A Cs fountain electron electric dipole moment (EDM) experiment using electric-field quantization is demonstrated. With magnetic fields reduced to 200 pT or less, the electric field lifts the degeneracy between hyperfine levels of different|mF| and, a long with the slow beam and fountain geometry, suppresses systematics from motional magnetic fields. Transitions are induced and the atoms polarized and analyzed in field-free regions. The feasibility of reaching a sensitivity to an electron EDM of 2 x 10 exp(-50) C-m [1.3 x 10 exp(-29) e-cm] in a cesium fountain experiment is discussed.
In a region free of currents, magnetostatics can be described by the Laplace equation of a scalar magnetic potential, and one can apply the same methods commonly used in electrostatics. Here we show how to calculate the general vector field inside a real (finite) solenoid, using only the magnitude of the field along the symmetry axis. Our method does not require integration or knowledge of the current distribution, and is presented through practical examples, including a non-uniform finite solenoid used to produce cold atomic beams via laser cooling. These examples allow educators to discuss the non-trivial calculation of fields off-axis using concepts familiar to most students, while offering the opportunity to introduce important advancements of current modern research.
154 - A. Gauguet 2009
We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal allowing to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generations of ultra-sensitive atom gyroscopes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا