ترغب بنشر مسار تعليمي؟ اضغط هنا

Coherent flash of light emitted by a cold atomic cloud

73   0   0.0 ( 0 )
 نشر من قبل David Wilkowski
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Maryvonne Chalony




اسأل ChatGPT حول البحث

When a resonant laser sent on an optically thick cold atomic cloud is abruptly switched off, a coherent flash of light is emitted in the forward direction. This transient phenomenon is observed due to the highly resonant character of the atomic scatterers. We analyze quantitatively its spatio-temporal properties and show very good agreement with theoretical predictions. Based on complementary experiments, the phase of the coherent field is reconstructed without interferometric tools.

قيم البحث

اقرأ أيضاً

75 - G. Labeyrie 1999
Light propagating in an optically thick sample experiences multiple scattering. It is now known that interferences alter this propagation, leading to an enhanced backscattering, a manifestation of weak localization of light in such diffuse samples. T his phenomenon has been extensively studied with classical scatterers. In this letter we report the first experimental evidence for coherent backscattering of light in a laser-cooled gas of Rubidium atoms.
201 - Bo Yan , Yisheng Ma , Yuzhu Wang 2008
We propose a new scheme of microwave frequency standards based on pulsed coherent optical information storage. Unlike the usual frequency reference where the Ramsey fringe is printed on the population of a certain state, we print the Ramsey fringe on the coherence. Then the coherence is detected in the form of a retrieval light. The central line of the Ramsey fringe can be used as a frequency reference in an absorption-cell-based atomic frequency standard. This scheme is free of light shifts as the interrogating process is separated from the optical pumping processes, and the cavity pulling effect is negligible due to the low Q requirement. Encoding the Ramsey interference into the retrieval light pulse has the merit of high signal to noise ratio and the estimated frequency stability of shot noise limit is about $2times10^{-14}$ in 1 second, this scheme is promising for building small, compact and stable atomic frequency standards.
We report the experimental observation of Coherent Population Oscillation (CPO) based light storage in an atomic vapor cell at room temperature. Using the ultranarrow CPO between the ground levels of a $Lambda$ system selected by polarization in meta stable $^4$He, such a light storage is experimentally shown to be phase preserving. As it does not involve any atomic coherences it has the advantage of being robust to dephasing effects such as small magnetic field inhomogeneities. The storage time is limited by the population lifetime of the ground states of the $Lambda$ system.
We calculate the relative permittivity of a cold atomic gas under weak probe illumination, up to second order in the density. Within the framework of a diagrammatic representation method, we identify all the second order diagrams that enter into the description of the relative permittivity for coherent light transmission. These diagrams originate from pairwise position correlation and recurrent scattering. Using coupled dipole equations, we numerically simulate the coherent transmission with scalar and vector waves, and find good agreement with the perturbative calculations. We applied this perturbative expansion approach to a classical gas at rest, but the method is extendable to thermal gas with finite atomic motion and to quantum gases where non-trivial pair correlations can be naturally included.
Starting from a three-wave interaction system of equations for free-electron lasers in the framework of a quantum fluid model, we show that these equations satisfy the Sine-Gordon equation. The full solution in space and in time of this set of equations are numerically obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا