ﻻ يوجد ملخص باللغة العربية
A complete high precision set of deuteron analyzing powers for elastic deuteron-proton ($dp$) scattering at 250 MeV/nucleon (MeV/N) has been measured. The new data are presented together with data from previous measurements at 70, 100, 135 and 200 MeV/N. They are compared with the results of three-nucleon (3N) Faddeev calculations based on modern nucleon-nucleon (NN) potentials alone or combined with two models of three nucleon forces (3NFs): the Tucson-Melbourne 99 (TM99) and Urbana IX. At 250 MeV/N large discrepancies between pure NN models and data, which are not resolved by including 3NFs, were found at c.m. backward angles of $theta_{rm c.m.}gtrsim 120^circ$ for almost all the deuteron analyzing powers. These discrepancies are quite similar to those found for the cross section at the same energy. We found small relativistic effects that cannot resolve the discrepancies with the data indicating that other, short-ranged 3NFs are required to obtain a proper description of the data.
High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the ce
The vector Ay and tensor analyzing powers Ayy and Axx for dp- elastic scattering were measured at Td = 880 MeV over the c.m. angular range from 60 to 140 degrees at the JINR Nuclotron. The data are compared with predictions of different theoretical m
A new measurement of the p-d differential cross section at Ep= 1 MeV has been performed. These new data and older data sets at energies below the deuteron breakup are compared to calculations using the two-nucleon Argonne v18 and the three-nucleon Ur
We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm$^{-1}$. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for m
Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data se