ترغب بنشر مسار تعليمي؟ اضغط هنا

A Systematic Search for Corotating Interaction Regions in Apparently Single Galactic Wolf-Rayet Stars. II. A Global View of the Wind Variability

70   0   0.0 ( 0 )
 نشر من قبل Andr\\'e-Nicolas Chen\\'e
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This study is the second part of a survey searching for large-scale spectroscopic variability in apparently single Wolf-Rayet (WR) stars. In a previous paper (Paper I), we described and characterized the spectroscopic variability level of 25 WR stars observable from the northern hemisphere and found 3 new candidates presenting large-scale wind variability, potentially originating from large-scale structures named Co-rotating Interaction Regions (CIRs). In this second paper, we discuss an additional 39 stars observable from the southern hemisphere. For each star in our sample, we obtained 4-5 high-resolution spectra with a signal-to-noise ratio of ~100 and determined its variability level using the approach described in Paper I. In total, 10 new stars are found to show large-scale spectral variability of which 7 present CIR-type changes (WR 8, WR 44, WR 55, WR 58, WR 61, WR 63, WR 100). Of the remaining stars, 20 were found to show small-amplitude changes and 9 were found to show no spectral variability as far as can be concluded from the data in hand. Also, we discuss the spectroscopic variability level of all single galactic WR stars that are brighter than v~12.5, and some WR stars with 12.5 < v <= 13.5; i.e. all the stars presented in our two papers and 4 more stars for which spectra have already been published in the literature. We find that 23/68 stars (33.8 %) present large-scale variability, but only 12/54 stars (~22.1 %) are potentially of CIR-type. Also, we find 31/68 stars (45.6 %) that only show small-scale variability, most likely due to clumping in the wind. Finally, no spectral variability is detected based on the data in hand for 14/68 (20.6 %) stars. Interestingly, the variability with the highest amplitude also have the widest mean velocity dispersion.

قيم البحث

اقرأ أيضاً

76 - A.-N. Chene 2011
A 30-day contiguous photometric run with the MOST satellite on the WN5-6b star WR 110 (HD 165688) reveals a fundamental periodicity of P = 4.08 +/- 0.55 days along with a number of harmonics at periods P/n, with n ~ 2,3,4,5 and 6, and a few other pos sible stray periodicities and/or stochastic variability on timescales longer than about a day. Spectroscopic RV studies fail to reveal any plausible companion with a period in this range. Therefore, we conjecture that the observed light-curve cusps of amplitude ~ 0.01 mag that recur at a 4.08 day timescale may arise in the inner parts, or at the base of, a corotating interaction region (CIR) seen in emission as it rotates around with the star at constant angular velocity. The hard X-ray component seen in WR 110 could then be a result of a high velocity component of the CIR shock interacting with the ambient wind at several stellar radii. Given that most hot, luminous stars showing CIRs have two CIR arms, it is possible that either the fundamental period is 8.2 days or, more likely in the case of WR 110, there is indeed a second weaker CIR arm for P = 4.08 days, that occurs ~ two thirds of a rotation period after the main CIR. If this interpretation is correct, WR 110 therefore joins the ranks with three other single WR stars, all WN, with confirmed CIR rotation periods (WR 1, WR 6, and WR 134), albeit with WR 110 having by far the lowest amplitude photometric modulation. This illustrates the power of being able to secure intense, continuous high-precision photometry from space-based platforms such as MOST. It also opens the door to revealing low-amplitude photometric variations in other WN stars, where previous attempts have failed. If all WN stars have CIRs at some level, this could be important for revealing sources of magnetism or pulsation in addition to rotation periods.
We present the results of a four-month, spectroscopic campaign of the Wolf-Rayet dust-making binary, WR137. We detect only small-amplitude, random variability in the CIII5696 emission line and its integrated quantities (radial velocity, equivalent wi dth, skewness, kurtosis) that can be explained by stochastic clumps in the wind of the WC star. We find no evidence of large-scale, periodic variations often associated with Corotating Interaction Regions that could have explained the observed intrinsic continuum polarization of this star. Our moderately high-resolution and high signal-to-noise average Keck spectrum shows narrow double-peak emission profiles in the Halpha, Hbeta, Hgamma, HeII6678 and HeII5876 lines. These peaks have a stable blue-to-red intensity ratio with a mean of 0.997 and a root-mean-square of 0.004, commensurate with the noise level; no variability is found during the entire observing period. We suggest that these profiles arise in a decretion disk around the O9 companion, which is thus an O9e star. The characteristics of the profiles are compatible with those of other Be/Oe stars. The presence of this disk can explain the constant component of the continuum polarization of this system, for which the angle is perpendicular to the plane of the orbit, implying that the rotation axis of the O9e star is aligned with that of the orbit. It remains to be explained why the disk is so stable within the strong ultraviolet radiation field of the O star. We present a binary evolutionary scenario that is compatible with the current stellar and system parameters.
Vigorous mass loss in the classical Wolf-Rayet (WR) phase is important for the late evolution and final fate of massive stars. We develop spherically symmetric time-dependent and steady-state hydrodynamical models of the radiation-driven wind outflow s and associated mass loss from classical WR stars. The simulations are based on combining the opacities typically used in static stellar structure and evolution models with a simple parametrised form for the enhanced line-opacity expected within a supersonic outflow. Our simulations reveal high mass-loss rates initiated in deep and hot optically thick layers around Tapprox 200kK. The resulting velocity structure is non-monotonic and can be separated into three phases: i) an initial acceleration to supersonic speeds ii) stagnation and even deceleration, and iii) an outer region of rapid re-acceleration. The characteristic structures seen in converged steady-state simulations agree well with the outflow properties of our time-dependent models. By directly comparing our dynamic simulations to corresponding hydrostatic models, we demonstrate explicitly that the need to invoke extra energy transport in convectively inefficient regions of stellar structure and evolution models is merely an artefact of enforcing a hydrostatic outer boundary. Moreover, the dynamically inflated inner regions of our simulations provide a natural explanation for the often-found mismatch between predicted hydrostatic WR radii and those inferred from spectroscopy. Finally, we contrast our simulations with alternative recent WR wind models based on co-moving frame radiative transfer for computing the radiation force. Since CMF transfer currently cannot handle non-monotonic velocity fields, the characteristic deceleration regions found here are avoided in such simulations by invoking an ad-hoc very high degree of clumping.
In recent years, much studies have focused on determining the origin of the large-scale line-profile and/or photometric patterns of variability displayed by some apparently single Wolf-Rayet stars, with the existence of an unseen (collapsed?) compani on or of spatially extended wind structures as potential candidates. We present observations of WR 1 which highlight the unusual character of the variations in this object. Our narrowband photometric observations reveal a gradual increase of the stellar continuum flux amounting to Delta v = 0.09 mag followed by a decline on about the same timescale (3-4 days). Only marginal evidence for variability is found during the 11 following nights. Strong, daily line-profile variations are also observed but they cannot be easily linked to the photometric variations. Similarly to the continuum flux variations, coherent time-dependent changes are observed in 1996 in the centroid, equivalent width, and skewness of He II 4686. Despite the generally coherent nature of the variations, we do not find evidence in our data for the periods claimed in previous studies. While the issue of a cyclical pattern of variability in WR 1 is still controversial, it is clear that this object might constitute in the future a cornerstone for our understanding of the mechanisms leading to the formation of largely anisotropic outflows in Wolf-Rayet stars.
For the past three years we have been conducting a survey for WR stars in the Large and Small Magellanic Clouds (LMC, SMC). Our previous work has resulted in the discovery of a new type of WR star in the LMC, which we are calling WN3/O3. These stars have the emission-line properties of a WN3 star (strong N V but no N IV), plus the absorption-line properties of an O3 star (Balmer hydrogen plus Pickering He II but no He I). Yet these stars are 15x fainter than an O3 V star would be by itself, ruling out these being WN3+O3 binaries. Here we report the discovery of two more members of this class, bringing the total number of these objects to 10, 6.5% of the LMCs total WR population. The optical spectra of nine of these WN3/O3s are virtually indistinguishable from each other, but one of the newly found stars is significantly different, showing a lower excitation emission and absorption spectrum (WN4/O4-ish). In addition, we have newly classified three unusual Of-type stars, including one with a strong C III 4650 line, and two rapidly rotating Oef stars. We also rediscovered a low mass x-ray binary, RX J0513.9-6951, and demonstrate its spectral variability. Finally, we discuss the spectra of ten low priority WR candidates that turned out not to have He II emission. These include both a Be star and a B[e] star.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا