ﻻ يوجد ملخص باللغة العربية
We describe a novel monolithic ion trap that combines the flexibility and scalability of silicon microfabrication technologies with the superior trapping characteristics of traditional four-rod Paul traps. The performace of the proposed microfabricated trap approaches that of the macroscopic structures. The fabrication process creates an angled through-chip slot which allows backside ion loading and through-laser access while avoiding surface light scattering and dielectric charging. The trap geometry and dimensions are optimized for confining long ion chains with equal ion spacing [G.-D. Lin, et al., Europhys. Lett. 86, 60004 (2009)]. Control potentials have been derived to produce linear, equally spaced ion chains of up to 50 ions spaced at 10 um. With the deep trapping depths achievable in this design, we expect that these chains will be sufficiently long-lived to be used in quantum simulations of magnetic systems [E.E. Edwards, et al., Phys. Rev. B 82, 060412(R) (2010)]. The trap is currently being fabricated at Georgia Tech using VLSI techniques.
We demonstrate confinement of individual atomic ions in a radio-frequency Paul trap with a novel geometry where the electrodes are located in a single plane and the ions confined above this plane. This device is realized with a relatively simple fabr
Atomic ions trapped in ultra-high vacuum form an especially well-understood and useful physical system for quantum information processing. They provide excellent shielding of quantum information from environmental noise, while strong, well-controlled
We investigate a surface-mounted electrode geometry for miniature linear radio frequency Paul ion traps. The electrodes reside in a single plane on a substrate, and the pseudopotential minimum of the trap is located above the substrate at a distance
Large-scale quantum information processors must be able to transport and maintain quantum information, and repeatedly perform logical operations. Here we demonstrate a combination of all the fundamental elements required to perform scalable quantum c
A scalable, multiplexed ion trap for quantum information processing is fabricated and tested. The trap design and fabrication process are optimized for scalability to small trap size and large numbers of interconnected traps, and for integration of c