ﻻ يوجد ملخص باللغة العربية
We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized by a broad peak at the cyclotron frequency. Unlike for infinitely extended gases, where the amplitude of the cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a direct counterpart in the electric susceptibility of the confined magnetized gas.
Motivated by recent experiments on the rod-like virus bacteriophage fd, confined to circular and annular domains, we present a theoretical study of structural transitions in these geometries. Using the continuum theory of nematic liquid crystals, we
The Vicsek model (Vicsek et al. 1995) is a very popular minimalist model to study active matter with a number of applications to biological systems at different length scales. With its off-lattice implementation and the periodic boundary conditions,
(Abridged) We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of ten magnetars, including canonical and transient anomalous X-ray pulsars (AXPs), and soft gamma repeaters (SGRs). In this scenario, non-ther
We demonstrate that models of resonant cyclotron radiation transfer in a strong field (i.e. cyclotron scattering) can account for spectral lines seen at two epochs, denoted S1 and S2, in the Ginga data for GRB870303. Using a generalized version of th
It is shown that the Truncated Euler Equations, i.e. a finite set of ordinary differential equations for the amplitude of the large-scale modes, can correctly describe the complex transitional dynamics that occur within the turbulent regime of a conf