ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant cyclotron scattering in magnetars emission

77   0   0.0 ( 0 )
 نشر من قبل Nanda Rea
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(Abridged) We present a systematic fit of a model of resonant cyclotron scattering (RCS) to the X-ray data of ten magnetars, including canonical and transient anomalous X-ray pulsars (AXPs), and soft gamma repeaters (SGRs). In this scenario, non-thermal magnetar spectra in the soft X-rays (i.e. below ~10 keV) result from resonant cyclotron scattering of the thermal surface emission by hot magnetospheric plasma. We find that this model can successfully account for the soft X-ray emission of magnetars, while using the same number of free parameters than the commonly used empirical blackbody plus power-law model. However, while the RCS model can alone reproduce the soft X-ray spectra of AXPs, the much harder spectra of SGRs below ~10 keV, requires the addition of a power-law component (the latter being the same component responsible for their hard X-ray emission). Although this model in its present form does not explain the hard X-ray emission of a few of these sources, we took this further component into account in our modeling not to overlook their contribution in the ~4-10 keV band. We find that the entire class of sources is characterized by magnetospheric plasma with a density which, at resonant radius, is about 3 orders of magnitudes higher than n_{GJ}, the Goldreich-Julian electron density. The inferred values of the intervening hydrogen column densities, are also in better agreement with more recent estimates inferred from the fit of single X-ray edges. For the entire sample of observations, we find indications for a correlation between the scattering depth and the electron thermal velocity, and the field strength. Moreover, in most transient anomalous X-ray pulsars the outburst state is characterized by a relatively high surface temperature which cools down during the decay.

قيم البحث

اقرأ أيضاً

50 - F.-W. Schwarm 2016
Electron cyclotron resonant scattering features (CRSFs) are observed as absorption-like lines in the spectra of X-ray pulsars. A significant fraction of the computing time for Monte Carlo simulations of these quantum mechanical features is spent on t he calculation of the mean free path for each individual photon before scattering, since it involves a complex numerical integration over the scattering cross section and the (thermal) velocity distribution of the scattering electrons. We aim to numerically calculate interpolation tables which can be used in CRSF simulations to sample the mean free path of the scattering photon and the momentum of the scattering electron. The tables also contain all the information required for sampling the scattering electrons final spin. The tables were calculated using an adaptive Simpson integration scheme. The energy and angle grids were refined until a prescribed accuracy is reached. The tables are used by our simulation code to produce artificial CRSF spectra. The electron momenta sampled during these simulations were analyzed and justified using theoretically determined boundaries. We present a complete set of tables suited for mean free path calculations of Monte Carlo simulations of the cyclotron scattering process for conditions expected in typical X-ray pulsar accretion columns (0.01<B/B_{crit}<=0.12, where B_{crit}=4.413x10^{13} G and 3keV<=kT<15keV). The sampling of the tables is chosen such that the results have an estimated relative error of at most 1/15 for all points in the grid. The tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo.
It is proposed that magnetospheric currents above the surfaces of magnetars radiate coherent emission in analogy to pulsars. Scaling the magnetospheric parameters suggests that the coherent emission from magnetars would emerge in the infra-red or optical.
108 - F.-W. Schwarm 2017
Cyclotron resonant scattering features (CRSFs) are formed by scattering of X-ray photons off quantized plasma electrons in the strong magnetic field (of the order 10^12 G) close to the surface of an accreting X-ray pulsar. The line profiles of CRSFs cannot be described by an analytic expression. Numerical methods such as Monte Carlo (MC) simulations of the scattering processes are required in order to predict precise line shapes for a given physical setup, which can be compared to observations to gain information about the underlying physics in these systems. A versatile simulation code is needed for the generation of synthetic cyclotron lines. Sophisticated geometries should be investigatable by making their simulation possible for the first time. The simulation utilizes the mean free path tables described in the first paper of this series for the fast interpolation of propagation lengths. The code is parallelized to make the very time consuming simulations possible on convenient time scales. Furthermore, it can generate responses to mono-energetic photon injections, producing Greens functions, which can be used later to generate spectra for arbitrary continua. We develop a new simulation code to generate synthetic cyclotron lines for complex scenarios, allowing for unprecedented physical interpretation of the observed data. An associated XSPEC model implementation is used to fit synthetic line profiles to NuSTAR data of Cep X-4. The code has been developed with the main goal of overcoming previous geometrical constraints in MC simulations of CRSFs. By applying this code also to more simple, classic geometries used in previous works, we furthermore address issues of code verification and cross-comparison of various models. The XSPEC model and the Greens function tables are available online at http://www.sternwarte.uni-erlangen.de/research/cyclo .
We consider a two-dimensional gas of colliding charged particles confined to finite size containers of various geometries and subjected to a uniform orthogonal magnetic field. The gas spectral densities are characterized by a broad peak at the cyclot ron frequency. Unlike for infinitely extended gases, where the amplitude of the cyclotron peak grows linearly with temperature, here confinement causes such a peak to go through a maximum for an optimal temperature. In view of the fluctuation-dissipation theorem, the reported resonance effect has a direct counterpart in the electric susceptibility of the confined magnetized gas.
We report on radio observations of five magnetars and two magnetar candidates carried out at 1950 MHz with the Green Bank Telescope in 2006-2007. The data from these observations were searched for periodic emission and bright single pulses. Also, mon itoring observations of magnetar 4U0142+61 following its 2006 X-ray bursts were obtained. No radio emission was detected was detected for any of our targets. The non-detections allow us to place luminosity upper limits (at 1950 MHz) of approximately L < 1.60 mJy kpc^2 for periodic emission and L < 7.6 Jy kpc^2 for single pulse emission. These are the most stringent limits yet for the magnetars observed. The resulting luminosity upper limits together with previous results are discussed, as is the importance of further radio observations of radio-loud and radio-quiet magnetars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا