ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards an accurate model of the redshift space clustering of halos in the quasilinear regime

40   0   0.0 ( 0 )
 نشر من قبل Beth Reid
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for measuring the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. Galaxies occupy dark matter halos, whose redshift space clustering has a complex dependence on bias that cannot be inferred from the behavior of matter. We identify two distinct corrections on quasilinear scales (~ 30-80 Mpc/h): the non-linear mapping between real and redshift space positions, and the non-linear suppression of power in the velocity divergence field. We model the first non-perturbatively using the scale-dependent Gaussian streaming model, which we show is accurate at the <0.5 (2) per cent level in transforming real space clustering and velocity statistics into redshift space on scales s>10 (s>25) Mpc/h for the monopole (quadrupole) halo correlation functions. We use perturbation theory to predict the real space pairwise halo velocity statistics. Our fully analytic model is accurate at the 2 per cent level only on scales s > 40 Mpc/h. Recent models that neglect the corrections from the bispectrum and higher order terms from the non-linear real-to-redshift space mapping will not have the accuracy required for current and future observational analyses. Finally, we note that our simulation results confirm the essential but non-trivial assumption that on large scales, the bias inferred from real space clustering of halos is the same one that determines their pairwise infall velocity amplitude at the per cent level.

قيم البحث

اقرأ أيضاً

We extend the scale-dependent Gaussian Streaming Model (GSM) to produce analytical predictions for the anisotropic redshift-space correlation function for biased tracers in modified gravity models. Employing the Convolution Lagrangian Perturbation Theory (CLPT) re-summation scheme, with a local Lagrangian bias schema provided by the peak-background split formalism, we predict the necessary ingredients that enter the GSM, the real-space halo pairwise velocity and the pairwise velocity dispersion. We further consider effective field theory contributions to the pairwise velocity dispersion in order to model correctly its large scale behavior. We apply our method on two widely-considered modified gravity models, the chameleon-screened f(R) Hu-Sawicki model and the nDGP Vainshtein model and compare our predictions against state-of-the-art N-body simulations for these models. We demonstrate that the GSM approach to predict the monopole and the quadrupole of the redshift-space correlation function for halos, gives very good agreement with the simulation data, for a wide range of screening mechanisms, levels of screening and halo masses at z=0.5 and z=1. Our work shows the applicability of the GSM, for cosmologies beyond GR, demonstrating that it can serve as a powerful predictive tool for the next stage of cosmological surveys like DESI, Euclid, LSST and WFIRST.
We analyse the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain constraints on the Hubble expansion rate $H(z)$, the angular-diameter distance $D_A(z)$, t he normalised growth rate $f(z)sigma_8(z)$, and the physical matter density $Omega_mh^2$. We adopt wide and flat priors on all model parameters in order to ensure the results are those of a `single-probe galaxy clustering analysis. We also marginalise over three nuisance terms that account for potential observational systematics affecting the measured monopole. However, such Monte Carlo Markov Chain analysis is computationally expensive for advanced theoretical models, thus we develop a new methodology to speed up our analysis. We obtain ${D_A(z)r_{s,fid}/r_s$Mpc, $H(z)r_s/r_{s,fid}$kms$^{-1}$Mpc$^{-1}$, $f(z)sigma_8(z)$, $Omega_m h^2}$ = ${956pm28$ , $75.0pm4.0$ , $0.397 pm 0.073$, $0.143pm0.017}$ at $z=0.32$ and ${1421pm23$, $96.7pm2.7$ , $0.497 pm 0.058$, $0.137pm0.015}$ at $z=0.59$ where $r_s$ is the comoving sound horizon at the drag epoch and $r_{s,fid}=147.66$Mpc for the fiducial cosmology in this study. In addition, we divide the galaxy sample into four redshift bins to increase the sensitivity of redshift evolution. However, we do not find improvements in terms of constraining dark energy model parameters. Combining our measurements with Planck data, we obtain $Omega_m=0.306pm0.009$, $H_0=67.9pm0.7$kms$^{-1}$Mpc$^{-1}$, and $sigma_8=0.815pm0.009$ assuming $Lambda$CDM; $Omega_k=0.000pm0.003$ assuming oCDM; $w=-1.01pm0.06$ assuming $w$CDM; and $w_0=-0.95pm0.22$ and $w_a=-0.22pm0.63$ assuming $w_0w_a$CDM. Our results show no tension with the flat $Lambda$CDM cosmological paradigm. This paper is part of a set that analyses the final galaxy clustering dataset from BOSS.
(abridged) We investigate the signatures left by the cosmic neutrino background on the clustering of matter, CDM+baryons and halos in redshift-space using a set of more than 1000 N-body and hydrodynamical simulations with massless and massive neutrin os. We find that the effect neutrinos induce on the clustering of CDM+baryons in redshift-space on small scales is almost entirely due to the change in $sigma_8$. Neutrinos imprint a characteristic signature in the quadrupole of the matter (CDM+baryons+neutrinos) field on small scales, that can be used to disentangle the effect of $sigma_8$ and $M_ u$. We show that the effect of neutrinos on the clustering of halos is very different, on all scales, to the one induced by $sigma_8$. We find that the effects of neutrinos of the growth rate of CDM+baryons ranges from $sim0.3%$ to $2%$ on scales $kin[0.01, 0.5]~h{rm Mpc}^{-1}$ for neutrinos with masses $M_ u leqslant 0.15$ eV. We compute the bias between the momentum of halos and the momentum of CDM+baryon and find it to be 1 on large scales for all models with massless and massive neutrinos considered. This point towards a velocity bias between halos and total matter on large scales that it is important to account for in order to extract unbiased neutrino information from velocity/momentum surveys such as kSZ observations. We show that baryonic effects can affect the clustering of matter and CDM+baryons in redshift-space by up to a few percent down to $k=0.5~h{rm Mpc}^{-1}$. We find that hydrodynamics and astrophysical processes, as implemented in our simulations, only distort the relative effect that neutrinos induce on the anisotropic clustering of matter, CDM+baryons and halos in redshift-space by less than $1%$. Thus, the effect of neutrinos in the fully non-linear regime can be written as a transfer function with very weak dependence on astrophysics.
141 - Yi Zheng 2018
The mapping of galaxy clustering from real space to redshift space introduces the anisotropic property to the measured galaxy density power spectrum in redshift space, known as the redshift space distortion (RSD) effect. The mapping formula is intrin sically non-linear, which is complicated by the higher order polynomials due to indefinite orders of cross correlations between density and velocity fields, and the Finger--of--God (FoG) effect due to the randomness of the galaxy peculiar velocity field. In previous works, we have verified the robustness of advanced TNS mapping formula in our hybrid RSD model in dark matter case, where the halo bias models are not taken into account for the halo mapping formula in redshift space. Using 100 realizations of halo catalogs in N-body simulations, we find that our halo RSD model with the known halo bias model and the effective FoG function accurately predicts the halo power spectrum measurements, within 1$sim$2% accuracy up to $ksim 0.2h$/Mpc, depending on different halo masses and redshifts.
We develop an extension of subhalo abundance matching (SHAM) capable of accurately reproducing the real and redshift-space clustering of galaxies in a state-of-the-art hydrodynamical simulation. Our method uses a low-resolution gravity-only simulatio n and it includes orphan and tidal disruption prescriptions for satellite galaxies, and a flexible amount of galaxy assembly bias. Furthermore, it includes recipes for star formation rate (SFR) based on the dark matter accretion rate. We test the accuracy of our model against catalogues of stellar-mass- and SFR-selected galaxies in the TNG300 hydrodynamic simulation. By fitting a small number of free parameters, our extended SHAM reproduces the projected correlation function and redshift-space multipoles for number densities $10^{-3} - 10^{-2}, h^{3}{rm Mpc}^{-3}$, at $z=1$ and $z=0$, and for scales $r in [0.3 - 20] h^{-1}{rm Mpc}$. Simultaneously, the SHAM results also retrieve the correct halo occupation distribution, the level of galaxy assembly bias, and higher-order statistics present in the TNG300 galaxy catalogues. As an application, we show that our model simultaneously fits the projected correlation function of the SDSS in 3 disjoint stellar mass bins, with an accuracy similar to that of TNG300 galaxies. This SHAM extension can be used to get accurate clustering prediction even when using low and moderate-resolution simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا