ﻻ يوجد ملخص باللغة العربية
We develop an extension of subhalo abundance matching (SHAM) capable of accurately reproducing the real and redshift-space clustering of galaxies in a state-of-the-art hydrodynamical simulation. Our method uses a low-resolution gravity-only simulation and it includes orphan and tidal disruption prescriptions for satellite galaxies, and a flexible amount of galaxy assembly bias. Furthermore, it includes recipes for star formation rate (SFR) based on the dark matter accretion rate. We test the accuracy of our model against catalogues of stellar-mass- and SFR-selected galaxies in the TNG300 hydrodynamic simulation. By fitting a small number of free parameters, our extended SHAM reproduces the projected correlation function and redshift-space multipoles for number densities $10^{-3} - 10^{-2}, h^{3}{rm Mpc}^{-3}$, at $z=1$ and $z=0$, and for scales $r in [0.3 - 20] h^{-1}{rm Mpc}$. Simultaneously, the SHAM results also retrieve the correct halo occupation distribution, the level of galaxy assembly bias, and higher-order statistics present in the TNG300 galaxy catalogues. As an application, we show that our model simultaneously fits the projected correlation function of the SDSS in 3 disjoint stellar mass bins, with an accuracy similar to that of TNG300 galaxies. This SHAM extension can be used to get accurate clustering prediction even when using low and moderate-resolution simulations.
We explore the degrees of freedom required to jointly fit projected and redshift-space clustering of galaxies selected in three bins of stellar mass from the Sloan Digital Sky Survey Main Galaxy Sample (SDSS MGS) using a subhalo abundance matching (S
We develop empirical methods for modeling the galaxy population and populating cosmological N-body simulations with mock galaxies according to the observed properties of galaxies in survey data. We use these techniques to produce a new set of mock ca
Hierarchical structure formation implies that the number of subhalos within a dark matter halo depends not only on halo mass, but also on the formation history of the halo. This dependence on the formation history, which is highly correlated with hal
Interacting dark energy models have been proposed as attractive alternatives to $Lambda$CDM. Forthcoming Stage-IV galaxy clustering surveys will constrain these models, but they require accurate modelling of the galaxy power spectrum multipoles on mi
Observations of galaxy clustering are made in redshift space, which results in distortions to the underlying isotropic distribution of galaxies. These redshift-space distortions (RSD) not only degrade important features of the matter density field, s