ﻻ يوجد ملخص باللغة العربية
With the growing interest in and ability of using weak lensing studies to probe the non-Gaussian properties of the matter density field, there is an increasing need for the study of suitable statistical measures, e.g. shear three-point statistics. In this paper we establish the relations between the three-point configuration space shear and convergence statistics, which are an important missing link between different weak lensing three-point statistics and provide an alternative way of relating observation and theory. The method we use also allows us to derive the relations between other two- and three-point correlation functions. We show the consistency of the relations obtained with already established results and demonstrate how they can be evaluated numerically. As a direct application, we use these relations to formulate the condition for E/B-mode decomposition of lensing three-point statistics, which is the basis for constructing new three-point statistics which allow for exact E/B-mode separation. Our work applies also to other two-dimensional polarization fields such as that of the Cosmic Microwave Background.
We use weak lensing data from the Hubble Space Telescope COSMOS survey to measure the second- and third-moments of the cosmic shear field, estimated from about 450,000 galaxies with average redshift <z> ~ 1.3. We measure two- and three-point shear st
We present cosmological constraints from a cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000), doubling the survey area with nine-band optical and near-infrared photometry with respect to previous KiDS analyses. Ad
Accurate knowledge of the effect of feedback from galaxy formation on the matter distribution is a key requirement for future weak lensing experiments. Recent studies using hydrodynamic simulations have shown that different baryonic feedback scenario
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera
Higher-order, non-Gaussian aspects of the large-scale structure carry valuable information on structure formation and cosmology, which is complementary to second-order statistics. In this work we measure second- and third-order weak-lensing aperture-