ترغب بنشر مسار تعليمي؟ اضغط هنا

Design, Fabrication, and Experimental Demonstration of Junction Surface Ion Traps

290   0   0.0 ( 0 )
 نشر من قبل David Moehring
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the design, fabrication, and experimental implementation of surface ion traps with Y-shaped junctions. The traps are designed to minimize the pseudopotential variations in the junction region at the symmetric intersection of three linear segments. We experimentally demonstrate robust linear and junction shuttling with greater than one million round-trip shuttles without ion loss. By minimizing the direct line of sight between trapped ions and dielectric surfaces, negligible day-to-day and trap-to-trap variations are observed. In addition to high-fidelity single-ion shuttling, multiple-ion chains survive splitting, ion-position swapping, and recombining routines. The development of two-dimensional trapping structures is an important milestone for ion-trap quantum computing and quantum simulations.



قيم البحث

اقرأ أيضاً

We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system; a combined micr ofabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. [1] we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping setup into a dilution fridge with superconducting qubits and present solutions that can be immediately implemented using current technology.
144 - Janus H. Wesenberg 2008
Surface-electrode (SE) rf traps are a promising approach to manufacturing complex ion-trap networks suitable for large-scale quantum information processing. In this paper we present analytical methods for modeling SE traps in the gapless plane approx imation, and apply these methods to two particular classes of SE traps. For the SE ring trap we derive analytical expressions for the trap geometry and strength, and also calculate the depth in the absence of control fields. For translationally symmetric multipole configurations (analogs of the linear Paul trap), we derive analytical expressions for electrode geometry and strength. Further, we provide arbitrarily good approximations of the trap depth in the absence of static fields and identify the requirements for obtaining maximal depth. Lastly, we show that the depth of SE multipoles can be greatly influenced by control fields.
Motivated by recent developments in ion trap design and fabrication, we investigate the stability of ion motion in asymmetrical, plan
State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-gr id array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensive surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with $^{40}$Ca$^+$ ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with $^{171}$Yb$^+$ ions in a second BGA trap.
The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior o f the rf-driven ion trap must be precisely known. This determination is even more difficult when scalable linear ion traps are used. Such traps enable a more advanced control of multiple ions and have become a platform for new applications in quantum metrology, simulation and computation. Nevertheless, their complex structure makes it more difficult to precisely determine its temperature in operation and thus the related systematic uncertainty. We present here scalable linear ion traps for optical clocks, which exhibit very low temperature rise under operation. We use a finite-element model refined with experimental measurements to determine the thermal distribution in the ion trap and the temperature at the position of the ions. The trap temperature is investigated at different rf-drive frequencies and amplitudes with an infrared camera and integrated temperature sensors. We show that for typical trapping parameters for $mathrm{In}^{+}$, $mathrm{Al}^{+}$, $mathrm{Lu}^{+}$, $mathrm{Ca}^{+}$, $mathrm{Sr}^{+}$ or $mathrm{Yb}^{+}$ ions, the temperature rise at the position of the ions resulting from rf heating of the trap stays below 700 mK and can be controlled with an uncertainty on the order of a few 100 mK maximum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا