ﻻ يوجد ملخص باللغة العربية
We present the design, fabrication, and experimental implementation of surface ion traps with Y-shaped junctions. The traps are designed to minimize the pseudopotential variations in the junction region at the symmetric intersection of three linear segments. We experimentally demonstrate robust linear and junction shuttling with greater than one million round-trip shuttles without ion loss. By minimizing the direct line of sight between trapped ions and dielectric surfaces, negligible day-to-day and trap-to-trap variations are observed. In addition to high-fidelity single-ion shuttling, multiple-ion chains survive splitting, ion-position swapping, and recombining routines. The development of two-dimensional trapping structures is an important milestone for ion-trap quantum computing and quantum simulations.
We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system; a combined micr
Surface-electrode (SE) rf traps are a promising approach to manufacturing complex ion-trap networks suitable for large-scale quantum information processing. In this paper we present analytical methods for modeling SE traps in the gapless plane approx
Motivated by recent developments in ion trap design and fabrication, we investigate the stability of ion motion in asymmetrical, plan
State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-gr
The uncertainty of the ac Stark shift due to thermal radiation represents a major contribution to the systematic uncertainty budget of state-of-the-art optical atomic clocks. In the case of optical clocks based on trapped ions, the thermal behavior o