ترغب بنشر مسار تعليمي؟ اضغط هنا

Complex Adaptive Digital EcoSystems

69   0   0.0 ( 0 )
 نشر من قبل Gerard Briscoe Dr
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف Gerard Briscoe




اسأل ChatGPT حول البحث

We investigate an abstract conceptualisation of DigitalEcosystems from a computer science perspective. We then provide a conceptual framework for the cross pollination of ideas, concepts and understanding between different classes of ecosystems through the universally applicable principles of Complex Adaptive Systems (CAS) modelling. A framework to assist the cross-disciplinary collaboration of research into Digital Ecosystems, including Digital BusinessEcosystems (DBEs) and Digital Knowledge Ecosystems (DKEs). So, we have defined the key steps towards a theoretical framework for Digital Ecosystems, that is compatible with the diverse theoretical views prevalent. Therefore, a theoretical edifice that can unify the diverse efforts within Digital Ecosystems research.

قيم البحث

اقرأ أيضاً

100 - G. Briscoe , P. De Wilde 2009
A primary motivation for our research in digital ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr oblems. However, the computing technologies that contribute to these properties have not been made explicit in digital ecosystems research. Here, we discuss how different computing technologies can contribute to providing the necessary self-organising features, including Multi-Agent Systems, Service-Oriented Architectures, and distributed evolutionary computing. The potential for exploiting these properties in digital ecosystems is considered, suggesting how several key features of biological ecosystems can be exploited in Digital Ecosystems, and discussing how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, considering the self-organised diversity of its evolving agent populations relative to the user request behaviour.
A primary motivation for our research in digital ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr oblems. However, the computing technologies that contribute to these properties have not been made explicit in digital ecosystems research. Here, we discuss how different computing technologies can contribute to providing the necessary self-organising features, including Multi-Agent Systems (MASs), Service-Oriented Architectures (SOAs), and distributed evolutionary computing (DEC). The potential for exploiting these properties in digital ecosystems is considered, suggesting how several key features of biological ecosystems can be exploited in Digital Ecosystems, and discussing how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, considering the self-organised diversity of its evolving agent populations relative to the user request behaviour.
A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic pr oblems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystems, including population dynamics, evolution, a complex dynamic environment, and spatial distributions for generating local interactions. The potential for exploiting these properties in artificial systems is then considered. We suggest that several key features of biological ecosystems have not been fully explored in existing digital ecosystems, and discuss how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, with measures originating from theoretical ecology, to confirm its likeness to a biological ecosystem. Including the responsiveness to requests for applications from the user base, as a measure of the ecological succession (development).
266 - G. Briscoe , P. De Wilde 2009
We view Digital Ecosystems to be the digital counterparts of biological ecosystems, exploiting the self-organising properties of biological ecosystems, which are considered to be robust, self-organising and scalable architectures that can automatical ly solve complex, dynamic problems. Digital Ecosystems are a novel optimisation technique where the optimisation works at two levels: a first optimisation, migration of agents (representing services) which are distributed in a decentralised peer-to-peer network, operating continuously in time; this process feeds a second optimisation based on evolutionary computing that operates locally on single peers and is aimed at finding solutions to satisfy locally relevant constraints. We created an Ecosystem-Oriented Architecture of Digital Ecosystems by extending Service-Oriented Architectures with distributed evolutionary computing, allowing services to recombine and evolve over time, constantly seeking to improve their effectiveness for the user base. Individuals within our Digital Ecosystem will be applications (groups of services), created in response to user requests by using evolutionary optimisation to aggregate the services. These individuals will migrate through the Digital Ecosystem and adapt to find niches where they are useful in fulfilling other user requests for applications. Simulation results imply that the Digital Ecosystem performs better at large scales than a comparable Service-Oriented Architecture, suggesting that incorporating ideas from theoretical ecology can contribute to useful self-organising properties in digital ecosystems.
Forty years ago, Robert May questioned a central belief in ecology by proving that sufficiently large or complex ecological networks have probability of persisting close to zero. To prove this point, he analyzed large networks in which species intera ct at random. However, in natural systems pairs of species have well-defined interactions (e.g., predator-prey, mutualistic or competitive). Here we extend Mays results to these relationships and find remarkable differences between predator-prey interactions, which increase stability, and mutualistic and competitive, which are destabilizing. We provide analytic stability criteria for all cases. These results have broad applicability in ecology. For example, we show that, surprisingly, the probability of stability for predator-prey networks is decreased when we impose realistic food web structure or we introduce a large preponderance of weak interactions. Similarly, stability is negatively impacted by nestedness in bipartite mutualistic networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا