ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-Solar-Circle Method for Determination of the Galactic Constants

49   0   0.0 ( 0 )
 نشر من قبل Takumi Nagayama
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method to determine the galactic constants R_0 (distance to the Galactic Center) and V_0 (rotation velocity of the Sun) from measurements of distances, radial velocities and proper motions of objects near the solar circle. This is a modification of the solar-circle method to a more practical observational method. We apply the method to determine R_0 using data from the literature with known distances and radial velocities, and obtain R_0 = 7.54 +/- 0.77 kpc.

قيم البحث

اقرأ أيضاً

42 - Stefano Sello 2013
The use of different solar activity indices like sunspot numbers, sunspot areas, flare index, magnetic fields, etc., allows us to investigate the time evolution of some specific features of the solar activity and the underlying dynamo mechanism. One of the problems when using these activity indices for some statistical analyses is the reliable determination of the maximum phases of different solar cycles which are generally characterized by a multi-peaked structure due to the presence of the so-called emph {Gnevyshev gap}. The main aim of this work is to propose a general method, without the introduction of ad hoc heuristic parameters, to determine the duration of a given solar cycle maximum phase through a long-term solar activity index like the Monthly Smoothed Sunspot Number (SSN). The resulting extended solar maxima allows us to include the multi-peaked structure of solar cycles and further the proposed method allows us to predict the solar maximum duration of the current solar cycle 24.
The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc i nto a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic HI and CO (J=1-0) data by producing artificial HI and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed HI and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the HI and H2 follow closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disk. The HI (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of 0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc. We also show that the HI opacity in the LAB data can be accounted for by using an `effective spin temperature of about 150 K: assuming an optically thin regime leads to underestimate the HI mass by about 30%.
We have compiled the most complete compact and ultracompact HII region catalogue to date via multi-wavelength inspection of survey data. We utilise data from the recently available SASSy 850$mu$m survey to identify massive star forming clumps in the outer Galaxy ($R_{rm{GC}}>8.5$ kpc) and cross-match with infrared and radio data of known UC HII regions from the RMS database. For the inner Galaxy sample ($R_{rm{GC}}<8.5$ kpc), we adopt the compact HII regions from previous works that used similar methods to cross match ATLASGAL with either CORNISH or RMS, depending on the location within the Galactic plane. We present a new UC HII region catalogue that more than doubles the original sample size of previous work, totaling 536 embedded HII regions and 445 host clumps. We examine the distance independent values of N$_{rm{Ly}}/$M and L$_{rm{bol}}/$M as proxies for massive star formation efficiency and overall star formation efficiency, respectively. We find a significant trend showing that L$_{rm{bol}}/$M decreases with increasing $R_{rm{GC}}$, suggesting that the overall star formation per unit mass is less in the outer Galaxy.
Magnetic fields are observed beyond the peripheries of optically detected galactic discs, while numerical models of their origin and the typical magnitudes are still absent. Previously, studies of galactic dynamo have avoided considering the peripher ies of galactic discs because of the very limited (though gradually growing) knowledge about the local properties of the interstellar medium. Here we investigate the possibility that magnetic fields can be generated in the outskirts of discs, taking the Milky Way as an example. We consider a simple evolving galactic dynamo model in the no-z formulation, applicable to peripheral regions of galaxies, for various assumptions about the radial and vertical profiles of the ionized gas disc. The magnetic field may grow as galaxies evolve, even in the more remote parts of the galactic disc, out to radii of 15 to 30 kpc, becoming substantial after times of about 10 Gyr. This result depends weakly on the adopted distributions of the half thickness and surface density of the ionized gas component. The model is robust to changes in the amplitude of the initial field and the position of its maximum strength. The magnetic field in the remote parts of the galactic disc could be generated in situ from a seed field by local dynamo action. Another possibility is field production in the central regions of a galaxy, followed by transport to the discs periphery by the joint action of the dynamo and turbulent diffusivity. Our results demonstrate the possibilities for the appearance and strengthening of magnetic fields at the peripheries of disc galaxies and emphasize the need for observational tests with new and anticipated radio telescopes (LOFAR, MWA, and SKA).
95 - Jianling Wang 2016
Using a Bayesian technology we derived distances and extinctions for over 100,000 red giant stars observed by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey by taking into account spectroscopic constraints from the APOGEE stellar parameters and photometric constraints from 2MASS, as well as a prior knowledge on the Milky Way. Derived distances are compared with those from four other independent methods, the Hipparcos parallaxes, star clusters, APOGEE red clump stars, and asteroseismic distances from APOKASC (Rodrigues et al. 2014) and SAGA Catalogues (Casagrande et al. 2014). These comparisons covers four orders of magnitude in the distance scale from 0.02 kpc to 20 kpc. The results show that our distances agree very well with those from other methods: the mean relative difference between our Bayesian distances and those derived from other methods ranges from -4.2% to +3.6%, and the dispersion ranges from 15% to 25%. The extinctions toward all stars are also derived and compared with those from several other independent methods: the Rayleigh-Jeans Color Excess (RJCE) method, Gonzalezs two-dimensional extinction map, as well as three-dimensional extinction maps and models. The comparisons reveal that, overall, estimated extinctions agree very well, but RJCE tends to overestimate extinctions for cool stars and objects with low logg.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا