ترغب بنشر مسار تعليمي؟ اضغط هنا

Distribution and kinematics of atomic and molecular gas inside the Solar circle

97   0   0.0 ( 0 )
 نشر من قبل Antonino Marasco
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detailed distribution and kinematics of the atomic and the CO-bright molecular hydrogen in the disc of the Milky Way inside the Solar circle are derived under the assumptions of axisymmetry and pure circular motions. We divide the Galactic disc into a series of rings, and assume that the gas in each ring is described by four parameters: its rotation velocity, velocity dispersion, midplane density and its scale height. We fit these parameters to the Galactic HI and CO (J=1-0) data by producing artificial HI and CO line-profiles and comparing them with the observations. Our approach allows us to fit all parameters to the data simultaneously without assuming a-priori a radial profile for one of the parameters. We present the distribution and kinematics of the HI and H2 in both the approaching (QIV) and the receding (QI) regions of the Galaxy. Our best-fit models reproduces remarkably well the observed HI and CO longitude-velocity diagrams up to a few degrees of distance from the midplane. With the exception of the innermost 2.5 kpc, QI and QIV show very similar kinematics. The rotation curves traced by the HI and H2 follow closely each other, flattening beyond R=6.5 kpc. Both the HI and the H2 surface densities show a) a deep depression at 0.5<R<2.5 kpc, analogous to that shown by some nearby barred galaxies, b) local overdensities that can be interpreted in terms of spiral arms or ring-like features in the disk. The HI (H2) properties are fairly constant in the region outside the depression, with typical velocity dispersion of 8.9+/-1.1 (4.4+/-1.2) km/s, density of 0.43+/-0.11 (0.42+/-0.22) cm-3 and HWHM scale height of 202+/-28 (64+/-12) pc. We also show that the HI opacity in the LAB data can be accounted for by using an `effective spin temperature of about 150 K: assuming an optically thin regime leads to underestimate the HI mass by about 30%.



قيم البحث

اقرأ أيضاً

We use the hydrodynamical simulation of our inner Galaxy presented in Armillotta et al. (2019) to study the gas distribution and kinematics within the CMZ. We use a resolution high enough to capture the gas emitting in dense molecular tracers such as NH3 and HCN, and simulate a time window of 50 Myr, long enough to capture phases during which the CMZ experiences both quiescent and intense star formation. We then post-process the simulated CMZ to calculate its spatially-dependent chemical and thermal state, producing synthetic emission data cubes and maps of both HI and the molecular gas tracers CO, NH3 and HCN. We show that, as viewed from Earth, gas in the CMZ is distributed mainly in two parallel and elongated features extending from positive longitudes and velocities to negative longitudes and velocities. The molecular gas emission within these two streams is not uniform, and it is mostly associated to the region where gas flowing towards the Galactic Center through the dust lanes collides with gas orbiting within the ring. Our simulated data cubes reproduce a number of features found in the observed CMZ. However, some discrepancies emerge when we use our results to interpret the position of individual molecular clouds. Finally, we show that, when the CMZ is near a period of intense star formation, the ring is mostly fragmented as a consequence of supernova feedback, and the bulk of the emission comes from star-forming molecular clouds. This correlation between morphology and star formation rate should be detectable in observations of extragalactic CMZs.
We present results of MUSE-ALMA Halos, an ongoing study of the Circumgalactic Medium (CGM) of galaxies ($z leq$ 1.4). Using multi-phase observations we probe the neutral, ionised and molecular gas in a sub-sample containing six absorbers and nine ass ociated galaxies in the redshift range $z sim 0.3-0.75$. Here, we give an in-depth analysis of the newly CO-detected galaxy Q2131-G1 ($z=0.42974$), while providing stringent mass and depletion time limits for the non-detected galaxies. Q2131-G1 is associated with an absorber with column densities of $textrm{log}(N_textrm{HI}/textrm{cm}^{-2}) sim 19.5$ and $textrm{log}(N_{textrm{H}_2}/textrm{cm}^{-2}) sim 16.5$, has a star formation rate of $textrm{SFR} = 2.00 pm 0.20 ; textrm{M}_{odot} textrm{yr}^{-1}$, a dark matter fraction of $f_textrm{DM}(r_{1/2}) = 0.24 - 0.54$ and a molecular gas mass of $M_textrm{mol} = 3.52 ^{+3.95}_{-0.31} times 10^9 ; textrm{M}_{odot}$ resulting in a depletion time of $tau_textrm{dep} < 4.15 ; textrm{Gyr}$. Kinematic modelling of both the CO (3--2) and [OIII] $lambda 5008$ emission lines of Q2131-G1 shows that the molecular and ionised gas phases are well aligned directionally and that the maximum rotation velocities closely match. These two gas phases within the disk are strongly coupled. The metallicity, kinematics and orientation of the atomic and molecular gas traced by a two-component absorption feature is consistent with being part of the extended rotating disk with a well-separated additional component associated with infalling gas. Compared to emission-selected samples, we find that HI-selected galaxies have high molecular gas masses given their low star formation rate. We consequently derive high depletion times for these objects.
124 - A. Hirschauer 2009
We present an analysis of results on absorption from Ca II, Ca I, K I, and the molecules CH+, CH, C2, and CN that probes gas interacting with the supernova remnant IC443. The eleven directions sample material across the visible nebula and beyond its eastern edge. Most of the neutral material, including the diatomic molecules, is associated with the ambient cloud detected via H I and CO emission. Analysis of excitation and chemistry yields gas densities that are typical of diffuse molecular gas. The low density gas probed by Ca II extends over a large range in velocities, from -120 to +80 km/s in the most extreme cases. This gas is distributed among several velocity components, unlike the situation for the shocked molecular clumps, whose emission occurs over much the same range but as very broad features. The extent of the high-velocity absorption suggests a shock velocity of 100 km/s for the expanding nebula.
122 - J. Syed 2020
Molecular clouds, which harbor the birthplaces of stars, form out of the atomic phase of the interstellar medium (ISM). We aim to characterize the atomic and molecular phases of the ISM and set their physical properties into the context of cloud form ation processes. We studied the cold neutral medium (CNM) by means of $rm HI$ self-absorption (HISA) toward the giant molecular filament GMF20.0-17.9 and compared our results with molecular gas traced by $^{13}rm CO$ emission. We fitted baselines of HISA features to $rm HI$ emission spectra using first and second order polynomial functions. The CNM identified by this method spatially correlates with the morphology of the molecular gas toward the western region. However, no spatial correlation between HISA and $^{13}rm CO$ is evident toward the eastern part of the filament. The distribution of HISA peak velocities and line widths agrees well with $^{13}rm CO$ within the whole filament. The column density probability density functions (N-PDFs) of HISA (CNM) and $rm HI$ emission (tracing both the CNM and the warm neutral medium, WNM) have a log-normal shape for all parts of the filament, indicative of turbulent motions as the main driver for these structures. The $rm H_2$ N-PDFs show a broad log-normal distribution with a power-law tail suggesting the onset of gravitational contraction. The saturation of $rm HI$ column density is observed at $sim$25$rm,M_{odot},pc^{-2}$. We conjecture that different evolutionary stages are evident within the filament. In the eastern region, we witness the onset of molecular cloud formation out of the atomic gas reservoir while the western part is more evolved, as it reveals pronounced $rm H_2$ column density peaks and signs of active star formation.
191 - Jin Koda 2016
We analyze radial and azimuthal variations of the phase balance between the molecular and atomic ISM in the Milky Way. In particular, the azimuthal variations -- between spiral arm and interarm regions -- are analyzed without any explicit definition of spiral arm locations. We show that the molecular gas mass fraction, i.e., fmol=H2/ (HI+H2) in mass, varies predominantly in the radial direction: starting from ~100% at the center, remaining ~>50% (~>60%) to R~6kpc, and decreasing to ~10-20% (~50%) at R=8.5 kpc when averaged over the whole disk thickness (in the mid plane). Azimuthal, arm-interarm variations are secondary: only ~20%, in the globally molecule-dominated inner MW, but becoming larger, ~40-50%, in the atom-dominated outskirts. This suggests that in the inner MW, the gas stays highly molecular (fmol>50%) as it goes from an interarm region, into a spiral arm, and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts, where the gas phase is globally atomic (fmol<50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., LMC, M33, and M51). We explain the radial gradient of fmol by a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in Appendix.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا