ترغب بنشر مسار تعليمي؟ اضغط هنا

Bolometric and non-bolometric radio frequency detection in a metallic single-walled carbon nanotube

122   0   0.0 ( 0 )
 نشر من قبل Daniel Santavicca
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We characterize radio frequency detection in a high-quality metallic single-walled carbon nanotube. At a bath temperature of 77 K, only bolometric (thermal) detection is seen. At a bath temperature of 4.2 K and low bias current, the response is due instead to the electrical nonlinearity of the non-ohmic contacts. At higher bias currents, the contacts recover ohmic behavior and the observed response agrees well with the calculated bolometric responsivity. The bolometric response is expected to operate at terahertz frequencies, and we discuss some of the practical issues associated with developing high frequency detectors based on carbon nanotubes.



قيم البحث

اقرأ أيضاً

93 - Z. Yu , P.J. Burke 2005
The dynamical conductance of electrically contacted single-walled carbon nanotubes is measured from dc to 10 GHz as a function of source-drain voltage in both the low-field and high-field limits. The ac conductance of the nanotube itself is found to be equal to the dc conductance over the frequency range studied for tubes in both the ballistic and diffusive limit. This clearly demonstrates that nanotubes can carry high-frequency currents at least as well as dc currents over a wide range of operating conditions. Although a detailed theoretical explanation is still lacking, we present a phenomenological model of the ac impedance of a carbon nanotube in the presence of scattering that is consistent with these results.
We characterize the terahertz detection mechanism in antenna-coupled metallic single-walled carbon nanotubes. At low temperature, 4.2 K, a peak in the low-frequency differential resistance is observed at zero bias current due to non-Ohmic contacts. T his electrical contact nonlinearity gives rise to the measured terahertz response. By modeling each nanotube contact as a nonlinear resistor in parallel with a capacitor, we determine an upper bound for the value of the contact capacitance that is smaller than previous experimental estimates. The small magnitude of this contact capacitance has favorable implications for the use of carbon nanotubes in high-frequency device applications.
Chirality-selected single-walled carbon nanotubes (SWCNTs) ensure a great potential of building ~1 nm sized electronics. However, the reliable method for chirality-selected SWCNT is still pending. Here we present a theoretical study on the SWCNTs chi rality assignment and control during the catalytic growth. This study reveals that the chirality of a SWCNT is determined by the kinetic incorporation of the pentagon formation during SWCNT nucleation. Therefore, chirality is randomly assigned on a liquid catalyst surface. Furthermore, based on the understanding, two potential methods of synthesizing chirality-selected SWCNTs are proposed: i) by using Ta, W, Re, Os, or their alloys as solid catalysts, and ii) by changing the SWCNTs chirality frequently during the growth.
Junctionless transistors made of silicon have previously been demonstrated experimentally and by simulations. Junctionless devices do not require fabricating an abrupt source-drain junction and thus can be easier to implement in aggressive geometries . In this paper, we explore a similar architecture for aggressively scaled devices with the channel consisting of doped carbon nanotubes (CNTs). Gate all around (GAA) field effect transistor (FET) structures are investigated for n- and p-type doping. Current-voltage characteristics and sub-threshold characteristics for a CNTbased junctionless FET is compared with a junctionless silicon nanowire (SiNW) FET with comparable dimensions. Despite the higher on-current of the CNT channels, the device characteristics are poorer compared to the silicon devices due to the smaller CNT band gap.
We present a new scheme to detect the quantum shot noise in coupled mesoscopic systems. By applying the noise thermometry to the capacitively coupled quantum point contacts (QPCs) we prove that the noise temperature of one QPC is in perfect proportio n to that of the other QPC which is driven to non-equilibrium to generate quantum shot noise. We also found an unexpected effect that the noise in the source QPC is remarkably suppressed possibly due to the cooling effect by the detector QPC.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا