ﻻ يوجد ملخص باللغة العربية
Constellation Constrained (CC) capacity regions of two-user Gaussian Multiple Access Channels (GMAC) have been recently reported, wherein an appropriate angle of rotation between the constellations of the two users is shown to enlarge the CC capacity region. We refer to such a scheme as the Constellation Rotation (CR) scheme. In this paper, we propose a novel scheme called the Constellation Power Allocation (CPA) scheme, wherein the instantaneous transmit power of the two users are varied by maintaining their average power constraints. We show that the CPA scheme offers CC sum capacities equal (at low SNR values) or close (at high SNR values) to those offered by the CR scheme with reduced decoding complexity for QAM constellations. We study the robustness of the CPA scheme for random phase offsets in the channel and unequal average power constraints for the two users. With random phase offsets in the channel, we show that the CC sum capacity offered by the CPA scheme is more than the CR scheme at high SNR values. With unequal average power constraints, we show that the CPA scheme provides maximum gain when the power levels are close, and the advantage diminishes with the increase in the power difference.
A scalable framework is developed to allocate radio resources across a large number of densely deployed small cells with given traffic statistics on a slow timescale. Joint user association and spectrum allocation is first formulated as a convex opti
In this paper, we consider the power allocation (PA) problem in cognitive radio networks (CRNs) employing nonorthogonal multiple access (NOMA) technique. Specifically, we aim to maximize the number of admitted secondary users (SUs) and their throughp
In this paper, we investigate the performance of a dual-hop block fading cognitive radio network with underlay spectrum sharing over independent but not necessarily identically distributed (i.n.i.d.) Nakagami-$m$ fading channels. The primary network
Flexible numerologies are being considered as part of designs for 5G systems to support vertical services with diverse requirements such as enhanced mobile broadband, ultra-reliable low-latency communications, and massive machine type communication.
It is known that interference alignment (IA) plays an important role in improving the degree of freedom (DoF) of multi-input and multi-output (MIMO) systems. However, most of the traditional IA schemes suffer from the high computational complexity an