ﻻ يوجد ملخص باللغة العربية
Here we report the size reduction and effects on nitrogen-vacancy centres in nanodiamonds by air oxidation using a combined atomic force and confocal microscope. The average height reduction of individual crystals as measured by atomic force microscopy was 10.6 nm/h at 600 {deg}C air oxidation at atmospheric pressure. The oxidation process modified the surface including removal of non-diamond carbon and organic material which also led to a decrease in background fluorescence. During the course of the nanodiamond size reduction, we observed the annihilation of nitrogen-vacancy centres which provided important insight into the formation of colour centres in small crystals. In these unirradiated samples, the smallest nanodiamond still hosting a stable nitrogen-vacancy centre observed was 8 nm.
We report on sensing stability of nanodiamond (ND) quantum sensors in various pH aqueous buffer solutions for the two detection schemes of quantum decoherence spectroscopy and thermometry. The electron spin properties of single nitrogen-vacancy (NV)
Nanodiamond is poised to become an attractive material for hyperpolarized 13C MRI if large nuclear polarizations can be achieved without the accompanying rapid spin-relaxation driven by paramagnetic species. Here we report enhanced and long-lived 13C
We discuss a qubit weakly coupled to a finite-size heat bath (calorimeter) from the point of view of quantum thermodynamics. The energy deposited to this environment together with the state of the qubit provides a basis to analyze the heat and work s
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticle (e.g. gold). Using the Jellium model in spherical coordinates, we compute the induced magnetic moment and the magnetic susceptibility for a nano
We investigate the role of quantum confinement on the performance of gas sensors based on two-dimensional InAs membranes. Pd-decorated InAs membranes configured as H2 sensors are shown to exhibit strong thickness dependence, with ~100x enhancement in