ﻻ يوجد ملخص باللغة العربية
We theoretically study quantum size effects in the magnetic response of a spherical metallic nanoparticle (e.g. gold). Using the Jellium model in spherical coordinates, we compute the induced magnetic moment and the magnetic susceptibility for a nanoparticle in the presence of a static external magnetic field. Below a critical magnetic field the magnetic response is diamagnetic, whereas above such field the magnetization is characterized by sharp, step-like increases of several tenths of Bohr magnetons, associated with the Zeeman crossing of energy levels above and below the Fermi sea. We quantify the robustness of these regimes against thermal excitations and finite linewidth of the electronic levels. Finally, we propose two methods for experimental detection of the quantum size effects based on the coupling to superconducting quantum interference devices.
The investigation of curved low-dimensional systems is a topic of great research interest. Such investigations include two-dimensional systems with cylindrical symmetry. In this work, we present a numerical study of the electronic transport propertie
The superposition principle is one of the bizarre predictions of quantum mechanics. Nevertheless, it has been experimentally verified using electrons, photons, atoms, and molecules. In this article, using a $20~$nm levitated ferromagnetic FePt nanopa
We investigate the role of quantum confinement on the performance of gas sensors based on two-dimensional InAs membranes. Pd-decorated InAs membranes configured as H2 sensors are shown to exhibit strong thickness dependence, with ~100x enhancement in
Through magnetic linear dichroism spectroscopy, the magnetic susceptibility anisotropy of metallic single-walled carbon nanotubes has been extracted and found to be 2-4 times greater than values for semiconducting single-walled carbon nanotubes. This
We present a theoretical study of the resonance fluorescence spectra of an optically driven quantum dot placed near a single metal nanoparticle. The metallic reservoir coupling is calculated for an 8-nm metal nanoparticle using a time-convolutionless