ترغب بنشر مسار تعليمي؟ اضغط هنا

A multi megawatt ring cyclotron to search for CP violation in the neutrino sector

135   0   0.0 ( 0 )
 نشر من قبل Alessandra Calanna
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new approach to search for CP violation in the neutrino sector [1,2] is proposed by the experiment called DAE{delta}ALUS (Decay At rest Experiment for {delta}cp At Laboratory for Underground Science). DAE{delta}ALUS needs three sources of neutrino fluxes, each one located at 1.5, 8 and 20 km from the underground detector. Here we present the study for a Superconducting Ring Cyclotron able to accelerate the H2+ molecules and to deliver proton beam with maximum energy of 800 MeV and the required high power. The magnetic field produced by the proposed superconducting magnetic sector, simulated by the code TOSCA, the isochronous magnetic field, some preliminary feature on the beam dynamic and the magnetic forces acting on the coils are here presented.



قيم البحث

اقرأ أيضاً

A Multi Megawatt Cyclotron complex able to accelerate H2+ to 800 MeV/amu is under study. It consists of an injector cyclotron able to accelerate the injected beam up to 50 MeV/n and of a booster ring made of 8 magnetic sectors and 8 RF cavities. The magnetic field and the forces on the superconducting coils are evaluated using the 3-D code OPERA. The injection and extraction trajectories are evaluated using the well tested codes developed by the MSU group in the 80s. The advantages to accelerate H2+ are described and preliminary evaluations on the feasibility and expected problems to build the injector cyclotron and the ring booster are here presented.
DAEdALUS, a Decay-At-rest Experiment for delta_CP studies At the Laboratory for Underground Science, provides a new approach to the search for CP violation in the neutrino sector. The design utilizes low-cost, high-power proton accelerators under dev elopment for commercial uses. These provide neutrino beams with energy up to 52 MeV from pion and muon decay-at-rest. The experiment searches for aninu_mu to antinu_e at short baselines corresponding to the atmospheric Delta m^2 region. The antinu_e will be detected, via inverse beta decay, in the 300 kton fiducial-volume Gd-doped water Cherenkov neutrino detector proposed for the Deep Underground Science and Engineering Laboratory (DUSEL). DAEdALUS opens new opportunities for DUSEL. It provides a high-statistics, low-background alternative for CP violation searches which matches the capability of the conventional long-baseline neutrino experiment, LBNE. Because of the complementary designs, when DAEdALUS antineutrino data are combined with LBNE neutrino data, the sensitivity of the CP-violation search improves beyond any present proposals, including the proposal for Project X. Also, the availability of an on-site neutrino beam opens opportunities for additional physics, both for the presently planned DUSEL detectors and for new experiments at a future 300 ft campus.
183 - S. Bar-Shalom , G. Eilam 1998
We discuss the prospects - within several models - for the observation of CP-violation (CPV) in top decays and production. The outlook looks best for t -> bW at the LHC (MSSM CPV), t -> b tau u_tau at TeV3, LHC and NLC (H^+ CPV), p p-bar -> t b-bar + X at TeV3 (MSSM CPV), p p -> t t-bar + X at the LHC (MSSM CPV and neutral Higgs CPV) and for e^+ e^- -> t t-bar h, t t-bar Z, where h is the lowest mass neutral Higgs boson, at an NLC with energy geq 1 TeV (neutral Higgs CPV).
Constraining CP-violating interactions in effective field theory (EFT) of dimension six faces two challenges. Firstly, degeneracies in the multi-dimensional space of Wilson coefficients have to be lifted. Secondly, quadratic contributions of CP-odd d imension six operators are difficult to disentangle from squared contributions of CP-even dimension six operators and from linear contributions of dimension eight operators. Both of these problems are present when new sources of CP-violation are present in the interactions between the Higgs boson and heavy strongly-interacting fermions. We show that degeneracies in the Wilson coefficients can be removed by combining measurements of Higgs-plus-two-jet production via gluon fusion with measurements of top-pair associated Higgs production. In addition, we demonstrate that the sensitivity of the analysis can be improved by exploiting the top-quark threshold in the gluon fusion process. Finally, we substantiate a perturbative argument about the validity of EFT by comparing the quadratic and linear contributions from CP-odd dimension six operators and use this to show explicitly that high statistics measurements at future colliders enable the extraction of perturbatively robust constraints on the associated Wilson coefficients.
Measurements of CP--violating observables in neutrino oscillation experiments have been studied in the literature as a way to determine the CP--violating phase in the mixing matrix for leptons. Here we show that such observables also probe new neutri no interactions in the production or detection processes. Genuine CP violation and fake CP violation due to matter effects are sensitive to the imaginary and real parts of new couplings. The dependence of the CP asymmetry on source--detector distance is different from the standard one and, in particular, enhanced at short distances. We estimate that future neutrino factories will be able to probe in this way new interactions that are up to four orders of magnitude weaker than the weak interactions. We discuss the possible implications for models of new physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا