ﻻ يوجد ملخص باللغة العربية
We investigate the relation of the stellar initial mass function (IMF) and the dense core mass function (CMF), using stellar masses and positions in 14 well-studied young groups. Initial column density maps are computed by replacing each star with a model initial core having the same star formation efficiency (SFE). For each group the SFE, core model, and observational resolution are varied to produce a realistic range of initial maps. A clumpfinding algorithm parses each initial map into derived cores, derived core masses, and a derived CMF. The main result is that projected blending of initial cores causes derived cores to be too few and too massive. The number of derived cores is fewer than the number of initial cores by a mean factor 1.4 in sparse groups and 5 in crowded groups. The mass at the peak of the derived CMF exceeds the mass at the peak of the initial CMF by a mean factor 1.0 in sparse groups and 12.1 in crowded groups. These results imply that in crowded young groups and clusters, the mass distribution of observed cores may not reliably predict the mass distribution of protostars which will form in those cores.
Observations of pre-/proto-stellar cores in young star-forming regions show them to be mass segregated, i.e. the most massive cores are centrally concentrated, whereas pre-main sequence stars in the same star-forming regions (and older regions) are n
In order to identify diagnostics distinguishing between pre- and post-mass-transfer systems, the mass-ratio distribution and period - eccentricity (P - e) diagram of barium and S stars are compared to those of the sample of binary red giants in open
We study a target sample of 68 low-mass objects (with spectral types in the range M4.5-L1) previously selected via photometric and astrometric criteria, as possible members of five young moving groups: the Local Association (Pleiades moving group, ag
We present first results from a multi-object spectroscopy campaign in IC2602, the Hyades, the Pleiades, and the Coma cluster using VLT/FLAMES. We analysed the data for radial velocity, rotational velocity, and H-alpha activity. Here, we highlight thr
We investigate the young (proto)stellar population in NGC 2023 and the L 1630 molecular cloud bordering the HII region IC 434, using Spitzer IRAC and MIPS archive data, JCMT SCUBA imaging and spectroscopy as well as targeted BIMA observations of one