ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling of the HERMES J105751.1+573027 submillimeter source lensed by a dark matter dominated foreground group of galaxies

54   0   0.0 ( 0 )
 نشر من قبل Alexander Conley
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a gravitational lensing analysis of the bright $zs=2.957$ sub-millimeter galaxy (SMG), HERMES J105751.1+573027 found in {it Herschel}/SPIRE Science Demonstration Phase data from the Herschel Multi-tiered Extragalactic Survey (HerMES) project. The high resolution imaging available in optical and Near-IR channels, along with CO emission obtained with the Plateau de Bure Interferometer, allow us to precisely estimate the intrinsic source extension and hence estimate the total lensing magnification to be $mu=10.9pm 0.7$. We measure the half-light radius $R_{rm eff}$ of the source in the rest-frame Near-UV and $V$ bands that characterize the unobscured light coming from stars and find $R_{rm eff,*}= [2.0 pm 0.1]$ kpc, in good agreement with recent studies on the Submillimeter Galaxy population. This lens model is also used to estimate the size of the gas distribution ($R_{rm eff,gas}= [1.1pm0.5]$) kpc by mapping back in the source plane the CO (J=5-4) transition line emission. The lens modeling yields a relatively large Einstein radius $R_{rm Ein}= 4farcs10 pm 0farcs02$, corresponding to a deflector velocity dispersion of [$483pm 16] ,kms$. This shows that HERMES J105751.1+573027 is lensed by a {it galaxy group-size} dark matter halo at redshift $zlsim 0.6$. The projected dark matter contribution largely dominates the mass budget within the Einstein radius with $f_{rm dm}(<R_{rm Ein})sim 80%$. This fraction reduces to $f_{rm dm}(<R_{rm eff,G1}simeq 4.5kpc)sim 47%$ within the effective radius of the main deflecting galaxy of stellar mass $M_{rm *,G1}=[8.5pm 1.6] times 10^{11}msun$. At this smaller scale the dark matter fraction is consistent with results already found for massive lensing ellipticals at $zsim0.2$ from the SLACS survey.

قيم البحث

اقرأ أيضاً

Mass models for a sample of 18 late-type dwarf and low surface brightness galaxies show that in almost all cases the contribution of the stellar disks to the rotation curves can be scaled to explain most of the observed rotation curves out to two or three disk scale lengths. The concept of a maximum disk, therefore, appears to work as well for these late-type dwarf galaxies as it does for spiral galaxies. Some of the mass-to-light ratios required in our maximum disk fits are high, however, up to about 15 in the R-band, with the highest values occurring in galaxies with the lowest surface brightnesses. Equally well-fitting mass models can be obtained with much lower mass-to-light ratios. Regardless of the actual contribution of the stellar disk, the fact that the maximum disk can explain the inner parts of the observed rotation curves highlights the similarity in shapes of the rotation curve of the stellar disk and the observed rotation curve. This similarity implies that the distribution of the total mass density is closely coupled to that of the luminous mass density in the inner parts of late-type dwarf galaxies.
We present a list of 13 candidate gravitationally lensed submillimeter galaxies (SMGs) from 95 square degrees of the Herschel Multi-tiered Extragalactic Survey, a surface density of 0.14pm0.04deg^{-2}. The selected sources have 500um flux densities ( S_500) greater than 100mJy. Gravitational lensing is confirmed by follow-up observations in 9 of the 13 systems (70%), and the lensing status of the four remaining sources is undetermined. We also present a supplementary sample of 29 (0.31pm0.06deg^{-2}) gravitationally lensed SMG candidates with S_500=80--100mJy, which are expected to contain a higher fraction of interlopers than the primary candidates. The number counts of the candidate lensed galaxies are consistent with a simple statistical model of the lensing rate, which uses a foreground matter distribution, the intrinsic SMG number counts, and an assumed SMG redshift distribution. The model predicts that 32--74% of our S_500>100mJy candidates are strongly gravitationally lensed (mu>2), with the brightest sources being the most robust; this is consistent with the observational data. Our statistical model also predicts that, on average, lensed galaxies with S_500=100mJy are magnified by factors of ~9, with apparently brighter galaxies having progressively higher average magnification, due to the shape of the intrinsic number counts. 65% of the sources are expected to have intrinsic 500micron flux densities less than 30mJy. Thus, samples of strongly gravitationally lensed SMGs, such as those presented here, probe below the nominal Herschel detection limit at 500 micron. They are good targets for the detailed study of the physical conditions in distant dusty, star-forming galaxies, due to the lensing magnification, which can lead to spatial resolutions of ~0.01 in the source plane.
We report the discovery of a bright ($f(250mum) > 400$ mJy), multiply-lensed submillimeter galaxy obj in {it Herschel}/SPIRE Science Demonstration Phase data from the HerMES project. Interferometric 880mum Submillimeter Array observations resolve a t least four images with a large separation of $sim 9arcsec$. A high-resolution adaptive optics $K_p$ image with Keck/NIRC2 clearly shows strong lensing arcs. Follow-up spectroscopy gives a redshift of $z=2.9575$, and the lensing model gives a total magnification of $mu sim 11 pm 1$. The large image separation allows us to study the multi-wavelength spectral energy distribution (SED) of the lensed source unobscured by the central lensing mass. The far-IR/millimeter-wave SED is well described by a modified blackbody fit with an unusually warm dust temperature, $88 pm 3$ K. We derive a lensing-corrected total IR luminosity of $(1.43 pm 0.09) times 10^{13}, mathrm{L}_{odot}$, implying a star formation rate of $sim 2500, mathrm{M}_{odot}, mathrm{yr}^{-1}$. However, models primarily developed from brighter galaxies selected at longer wavelengths are a poor fit to the full optical-to-millimeter SED. A number of other strongly lensed systems have already been discovered in early {it Herschel} data, and many more are expected as additional data are collected.
84 - K. Coppin 2010
Spitzer spectroscopy has revealed that ~80% of submm galaxies (SMGs) are starburst (SB) dominated in the mid-infrared. Here we focus on the remaining ~20% that show signs of harboring powerful active galactic nuclei (AGN). We have obtained Spitzer-IR S spectroscopy of a sample of eight SMGs which are candidates for harboring powerful AGN on the basis of IRAC color-selection (S8/S4.5>2; i.e. likely power-law mid-infrared SEDs). SMGs with an AGN dominating (>50%) their mid-infrared emission could represent `missing link sources in an evolutionary sequence involving a major merger. First of all, we detect PAH features in all of the SMGs, indicating redshifts from 2.5-3.4, demonstrating the power of the mid-infrared to determine redshifts for these optically faint dusty galaxies. Secondly, we see signs of both star-formation (from the PAH features) and AGN activity (from continuum emission) in our sample: 62% of the sample are AGN-dominated in the mid-infrared with a median AGN content of 56%, compared with <30% on average for typical SMGs, revealing that our IRAC color selection has successfully singled out sources with proportionately more AGN emission than typical SB-dominated SMGs. However, we find that only about 10% of these AGN dominate the bolometric emission of the SMG when the results are extrapolated to longer infrared wavelengths, implying that AGN are not a significant power source to the SMG population overall, even when there is evidence in the mid-infrared for substantial AGN activity. When existing samples of mid-infrared AGN-dominated SMGs are considered, we find that S8/S4.5>1.65 works well at selecting mid-infrared energetically dominant AGN in SMGs, implying a duty cycle of ~15% if all SMGs go through a subsequent mid-infrared AGN-dominated phase in the proposed evolutionary sequence.
We show that the canonical oscillation-based (non-resonant) production of sterile neutrino dark matter is inconsistent at $>99$% confidence with observations of galaxies in the Local Group. We set lower limits on the non-resonant sterile neutrino mas s of $2.5$ keV (equivalent to $0.7$ keV thermal mass) using phase-space densities derived for dwarf satellite galaxies of the Milky Way, as well as limits of $8.8$ keV (equivalent to $1.8$ keV thermal mass) based on subhalo counts of $N$-body simulations of M 31 analogues. Combined with improved upper mass limits derived from significantly deeper X-ray data of M 31 with full consideration for background variations, we show that there remains little room for non-resonant production if sterile neutrinos are to explain $100$% of the dark matter abundance. Resonant and non-oscillation sterile neutrino production remain viable mechanisms for generating sufficient dark matter sterile neutrinos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا