ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of a level crossing in a molecular nanomagnet using implanted muons

69   0   0.0 ( 0 )
 نشر من قبل Tom Lancaster
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have observed an electronic energy level crossing in a molecular nanomagnet (MNM) using muon-spin relaxation. This effect, not observed previously despite several muon studies of MNM systems, provides further evidence that the spin relaxation of the implanted muon is sensistive to the dynamics of the electronic spin. Our measurements on a broken ring MNM [H_{2}N^{t}Bu^{is}Pr][Cr_{8}CdF_{9}(O_{2}CC(CH_{3})_{3})_{18}] (hereafter Cr_{8}Cd), which contains eight Cr ions, show clear evidence for the S=0 to S=1 transition that takes place at B_{c}=2.3 T. The crossing is observed as a resonance-like dip in the average positron asymmetry and also in the muon-spin relaxation rate, which shows a sharp increase in magnitude at the transition and a peak centred within the S=1 regime.


قيم البحث

اقرأ أيضاً

We present the results of muon-spin relaxation measurements of spin excitations in the one-dimensional quantum Heisenberg antiferromagnet Cu(pyz)(NO$_{3}$)$_{2}$. Using density-functional theory we propose muon sites and assess the degree of perturba tion the muon probe causes on the system. We identify a site involving the muon forming a hydroxyl-type bond with an oxygen on the nitrate group that is sensitive to the characteristic spin dynamics of the system. Our measurements of the spin dynamics show that in the temperature range $T_{mathrm{N}}<T<J$ (between the ordering temperature $T_{mathrm{N}}$ and the exchange energy scale $J$) the field-dependent muon spin relaxation is characteristic of diffusive transport of spin excitations over a wide range of applied fields. We also identify a possible crossover at higher applied fields in the muon probes response to the fluctuation spectrum, to a regime where the muon detects early-time transport with a ballistic character. This behavior is contrasted with that found for $T>J$ and that in the related two-dimensional system Cu(pyz)$_2$(ClO$_4$)$_{2}$.
When Landau levels (LLs) become degenerate near the Fermi energy in the quantum Hall regime, interaction effects can drastically modify the electronic ground state. We study the quantum Hall ferromagnet formed in a two-dimensional hole gas around the LL filling factor $ u=1$ in the vicinity of a LL crossing in the heave-hole valence band. Cavity spectroscopy in the strong-coupling regime allows us to optically extract the two-dimensional hole gas spin polarization. By analyzing this polarization as a function of hole density and magnetic field, we observe a spin flip of the ferromagnet. Furthermore, the depolarization away from $ u=1$ accelerates close to the LL crossing. This is indicative of an increase in the size of Skyrmion excitations as the effective Zeeman energy vanishes at the LL crossing.
We present the results of muon-spin relaxation ($mu^{+}$SR) measurements on antiferromagnetic and ferromagnetic spin chains. In antiferromagnetic CuF$_{2}$(pyz) we identify a transition to long range magnetic order taking place at $T_{mathrm{N}} = 0. 6(1)$ K, allowing us to estimate a ratio with the intrachain exchange of $T_{mathrm{N}}/|J| approx 0.1$ and the ratio of interchain to intrachain exchange coupling as $|J/J| approx 0.05$. The ferromagnetic chain [Sm(hfac)$_{3}$(boaDTDA)]$_{n}$ undergoes an ordering transition at $T_{mathrm{c}}=2.8(1)$ K, seen via a broad freezing of dynamic fluctuations on the muon (microsecond) timescale and implying $T_{mathrm{c}}/|J| approx 0.6$. The ordered radical moment continues to fluctuate on this timescale down to 0.3 K, while the Sm moments remain disordered. In contrast, the radical spins in [La(hfac)$_{3}$(boaDTDA)]$_{n}$ remain magnetically disordered down to $T=0.1$ K suggesting $T_{mathrm{c}}/|J| < 0.17$.
We study the excitation dynamics of a single molecular nanomagnet by static and pulsed magnetic fields. Based on a stability analysis of the classical magnetization dynamics we identify analytically the fields parameters for which the energy is stoch astically pumped into the system in which case the magnetization undergoes diffusively and irreversibly a large angle deflection. An approximate analytical expression for the diffusion constant in terms of the fields parameters is given and assessed by full numerical calculations.
This paper is a continuation of a previous work about the study of the survival probability modelizing the molecular predissociation in the Born-Oppenheimer framework. Here we consider the critical case where the reference energy corresponds to the v alue of a crossing of two electronic levels, one of these two levels being confining while the second dissociates. We show that the survival probability associated to a certain initial state is a sum of the usual time-dependent exponential contribution, and a reminder term that is jointly polynomially small with respect to the time and the semiclassical parameter. We also compute explicitly the main contribution of the remainder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا