ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneously gapped ground state in suspended bilayer graphene

147   0   0.0 ( 0 )
 نشر من قبل Frank Freitag
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Bilayer graphene bears an eight-fold degeneracy due to spin, valley and layer symmetry, allowing for a wealth of broken symmetry states induced by magnetic or electric fields, by strain, or even spontaneously by interaction. We study the electrical transport in clean current annealed suspended bilayer graphene. We find two kind of devices. In bilayers of type B1 the eight-fold zero-energy Landau level (LL) is partially lifted above a threshold field revealing an insulating nu=0 quantum Hall state at the charge neutrality point (CNP). In bilayers of type B2 the LL lifting is full and a gap appears in the differential conductance even at zero magnetic field, suggesting an insulating spontaneously broken symmetry state. Unlike B1, the minimum conductance in B2 is not exponentially suppressed, but remains finite with a value G < e^2/h even in a large magnetic field. We suggest that this phase of B2 is insulating in the bulk and bound by compressible edge states.



قيم البحث

اقرأ أيضاً

Microscopic nonlinear quantum theory of interaction of coherent electromagnetic radiation with gapped bilayer graphene is developed. The Liouville-von Neumann equation for the density matrix is solved numerically at the multiphoton excitation regime. The developed theory of interaction of charged carriers with strong driving wave field is valid near the Dirac points of the Brillouin zone. We consider the harmonic generation process in the nonadiabatic regime of interaction when the Keldysh parameter is of the order of unity. On the basis of numerical solutions, we examine the rates of odd and even high-harmonics at the particle-hole annihilation in the field of a strong pump wave of arbitrary polarization. Obtained results show that the gapped bilayer graphene can serve as an effective medium for generation of even and odd high harmonics in the THz and far infrared domains of frequencies.
Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that regular electron - optical phonon scattering in bilayer graphene provides the dominant scattering process at electron energies $ gtrsim 0.15$ eV. We determine the strength of these intrinsic heat flow processes of bilayer graphene and find good agreement with theoretical estimates when both zone edge and zone center optical phonons are taken into account.
We have measured the magneto-resistance of freely suspended high-mobility bilayer graphene. For magnetic fields $B>1$ T we observe the opening of a field induced gap at the charge neutrality point characterized by a diverging resistance. For higher f ields the eight-fold degenerated lowest Landau level lifts completely. Both the sequence of this symmetry breaking and the strong transition of the gap-size point to a ferromagnetic nature of the insulating phase developing at the charge neutrality point.
We report pronounced magnetoconductance oscillations observed on suspended bilayer and trilayer graphene devices with mobilities up to 270,000 cm2/Vs. For bilayer devices, we observe conductance minima at all integer filling factors nu between 0 and -8, as well as a small plateau at { u}=1/3. For trilayer devices, we observe features at nu=-1, -2, -3 and -4, and at { u}~0.5 that persist to 4.5K at B=8T. All of these features persist for all accessible values of Vg and B, and could suggest the onset of symmetry breaking of the first few Landau (LL) levels and fractional quantum Hall states.
We report a change of three orders of magnitudes in the resistance of a suspended bilayer graphene flake which varies from a few k$Omega$s in the high carrier density regime to several M$Omega$s around the charge neutrality point (CNP). The correspon ding transport gap is 8 meV at 0.3 K. The sequence of appearing quantum Hall plateaus at filling factor $ u=2$ followed by $ u=1$ suggests that the observed gap is caused by the symmetry breaking of the lowest Landau level. Investigation of the gap in a tilted magnetic field indicates that the resistance at the CNP shows a weak linear decrease for increasing total magnetic field. Those observations are in agreement with a spontaneous valley splitting at zero magnetic field followed by splitting of the spins originating from different valleys with increasing magnetic field. Both, the transport gap and $B$ field response point toward spin polarized layer antiferromagnetic state as a ground state in the bilayer graphene sample. The observed non-trivial dependence of the gap value on the normal component of $B$ suggests possible exchange mechanisms in the system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا