ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing top gated bilayer graphene interaction with its environment by Raman spectroscopy

64   0   0.0 ( 0 )
 نشر من قبل Daniela Mafra
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we study the behavior of the optical phonon modes in bilayer graphene devices by applying top gate voltage, using Raman scattering. We observe the splitting of the Raman G band as we tune the Fermi level of the sample, which is explained in terms of mixing of the Raman (Eg) and infrared (Eu) phonon modes, due to different doping in the two layers. We theoretically analyze our data in terms of the bilayer graphene phonon self-energy which includes non-homogeneous charge carrier doping between the graphene layers. We show that the comparison between the experiment and theoretical model not only gives information about the total charge concentration in the bilayer graphene device, but also allows to separately quantify the amount of unintentional charge coming from the top and the bottom of the system, and therefore to characterize the interaction of bilayer graphene with its surrounding environment.

قيم البحث

اقرأ أيضاً

90 - A. Das , S. Pisana , S. Piscanec 2007
We demonstrate electrochemical top gating of graphene by using a solid polymer electrolyte. This allows to reach much higher electron and hole doping than standard back gating. In-situ Raman measurements monitor the doping. The G peak stiffens and sh arpens for both electron and hole doping, while the 2D peak shows a different response to holes and electrons. Its position increases for hole doping, while it softens for high electron doping. The variation of G peak position is a signature of the non-adiabatic Kohn anomaly at $Gamma$. On the other hand, for visible excitation, the variation of the 2D peak position is ruled by charge transfer. The intensity ratio of G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor charges.
131 - Y. Q. Wu , P. D. Ye , M.A. Capano 2008
Top-gated, few-layer graphene field-effect transistors (FETs) fabricated on thermally-decomposed semi-insulating 4H-SiC substrates are demonstrated. Physical vapor deposited SiO2 is used as the gate dielectric. A two-dimensional hexagonal arrangement of carbon atoms with the correct lattice vectors, observed by high-resolution scanning tunneling microscopy, confirms the formation of multiple graphene layers on top of the SiC substrates. The observation of n-type and p-type transition further verifies Dirac Fermions unique transport properties in graphene layers. The measured electron and hole mobility on these fabricated graphene FETs are as high as 5400 cm2/Vs and 4400 cm2/Vs respectively, which are much larger than the corresponding values from conventional SiC or silicon.
134 - M. M. Fogler , E. McCann 2010
We analyze the response of bilayer graphene to an external transverse electric field using a variational method. A previous attempt to do so in a recent paper by Falkovsky [Phys. Rev. B 80, 113413 (2009)] is shown to be flawed. Our calculation reaffi rms the original results obtained by one of us [E. McCann, Phys. Rev. B 74, 161403(R) (2006)] by a different method. Finally, we generalize these original results to describe a dual-gated bilayer graphene device.
The effects of Coulomb interactions on the electronic properties of bilayer graphene nanoribbons (BGNs) covered by a gate electrode are studied theoretically. The electron density distribution and the potential profile are calculated self-consistentl y within the Hartree approximation. A comparison to their single-particle counterparts reveals the effects of interactions and screening. Due to the finite width of the nanoribbon in combination with electronic repulsion, the gate-induced electrons tend to accumulate along the BGN edges where the potential assumes a sharp triangular shape. This has a profound effect on the energy gap between electron and hole bands, which depends nonmonotonously on the gate voltage and collapses at intermediate electric fields. We interpret this behavior in terms of interaction-induced warping of the energy dispersion.
115 - J. Ribeiro-Soares 2015
A theoretical model supported by experimental results explains the dependence of the Raman scattering signal on the evolution of structural parameters along the amorphization trajectory of polycrystalline graphene systems. Four parameters rule the sc attering efficiencies, two structural and two related to the scattering dynamics. With the crystallite sizes previously defined from X-ray diffraction and microscopy experiments, the three other parameters (the average grain boundaries width, the phonon coherence length, and the electron coherence length) are extracted from the Raman data with the geometrical model proposed here. The broadly used intensity ratio between the C-C stretching (G band) and the defect-induced (D band) modes can be used to measure crystallite sizes only for samples with sizes larger than the phonon coherence length, which is found equal to 32 nm. The Raman linewidth of the G band is ideal to characterize the crystallite sizes below the phonon coherence length, down to the average grain boundaries width, which is found to be 2.8 nm. Ready-to-use equations to determine the crystallite dimensions based on Raman spectroscopy data are given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا