ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast matrix computations for pair-wise and column-wise commute times and Katz scores

44   0   0.0 ( 0 )
 نشر من قبل David Gleich
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We first explore methods for approximating the commute time and Katz score between a pair of nodes. These methods are based on the approach of matrices, moments, and quadrature developed in the numerical linear algebra community. They rely on the Lanczos process and provide upper and lower bounds on an estimate of the pair-wise scores. We also explore methods to approximate the commute times and Katz scores from a node to all other nodes in the graph. Here, our approach for the commute times is based on a variation of the conjugate gradient algorithm, and it provides an estimate of all the diagonals of the inverse of a matrix. Our technique for the Katz scores is based on exploiting an empirical localization property of the Katz matrix. We adopt algorithms used for personalized PageRank computing to these Katz scores and theoretically show that this approach is convergent. We evaluate these methods on 17 real world graphs ranging in size from 1000 to 1,000,000 nodes. Our results show that our pair-wise commute time method and column-wise Katz algorithm both have attractive theoretical properties and empirical performance.

قيم البحث

اقرأ أيضاً

Numerous studies and anecdotes demonstrate the wisdom of the crowd, the surprising accuracy of a groups aggregated judgments. Less is known, however, about the generality of crowd wisdom. For example, are crowds wise even if their members have system atic judgmental biases, or can influence each other before members render their judgments? If so, are there situations in which we can expect a crowd to be less accurate than skilled individuals? We provide a precise but general definition of crowd wisdom: A crowd is wise if a linear aggregate, for example a mean, of its members judgments is closer to the target value than a randomly, but not necessarily uniformly, sampled member of the crowd. Building on this definition, we develop a theoretical framework for examining, a priori, when and to what degree a crowd will be wise. We systematically investigate the boundary conditions for crowd wisdom within this framework and determine conditions under which the accuracy advantage for crowds is maximized. Our results demonstrate that crowd wisdom is highly robust: Even if judgments are biased and correlated, one would need to nearly deterministically select only a highly skilled judge before an individuals judgment could be expected to be more accurate than a simple averaging of the crowd. Our results also provide an accuracy rationale behind the need for diversity of judgments among group members. Contrary to folk explanations of crowd wisdom which hold that judgments should ideally be independent so that errors cancel out, we find that crowd wisdom is maximized when judgments systematically differ as much as possible. We re-analyze data from two published studies that confirm our theoretical results.
Online image hashing has received increasing research attention recently, which processes large-scale data in a streaming fashion to update the hash functions on-the-fly. To this end, most existing works exploit this problem under a supervised settin g, i.e., using class labels to boost the hashing performance, which suffers from the defects in both adaptivity and efficiency: First, large amounts of training batches are required to learn up-to-date hash functions, which leads to poor online adaptivity. Second, the training is time-consuming, which contradicts with the core need of online learning. In this paper, a novel supervised online hashing scheme, termed Fast Class-wise Updating for Online Hashing (FCOH), is proposed to address the above two challenges by introducing a novel and efficient inner product operation. To achieve fast online adaptivity, a class-wise updating method is developed to decompose the binary code learning and alternatively renew the hash functions in a class-wise fashion, which well addresses the burden on large amounts of training batches. Quantitatively, such a decomposition further leads to at least 75% storage saving. To further achieve online efficiency, we propose a semi-relaxation optimization, which accelerates the online training by treating different binary constraints independently. Without additional constraints and variables, the time complexity is significantly reduced. Such a scheme is also quantitatively shown to well preserve past information during updating hashing functions. We have quantitatively demonstrated that the collective effort of class-wise updating and semi-relaxation optimization provides a superior performance comparing to various state-of-the-art methods, which is verified through extensive experiments on three widely-used datasets.
We consider two alternative tests to the Higher Criticism test of Donoho and Jin [Ann. Statist. 32 (2004) 962-994] for high-dimensional means under the sparsity of the nonzero means for sub-Gaussian distributed data with unknown column-wise dependenc e. The two alternative test statistics are constructed by first thresholding $L_1$ and $L_2$ statistics based on the sample means, respectively, followed by maximizing over a range of thresholding levels to make the tests adaptive to the unknown signal strength and sparsity. The two alternative tests can attain the same detection boundary of the Higher Criticism test in [Ann. Statist. 32 (2004) 962-994] which was established for uncorrelated Gaussian data. It is demonstrated that the maximal $L_2$-thresholding test is at least as powerful as the maximal $L_1$-thresholding test, and both the maximal $L_2$ and $L_1$-thresholding tests are at least as powerful as the Higher Criticism test.
With the severity of the COVID-19 outbreak, we characterize the nature of the growth trajectories of counties in the United States using a novel combination of spectral clustering and the correlation matrix. As the U.S. and the rest of the world are experiencing a severe second wave of infections, the importance of assigning growth membership to counties and understanding the determinants of the growth are increasingly evident. Subsequently, we select the demographic features that are most statistically significant in distinguishing the communities. Lastly, we effectively predict the future growth of a given county with an LSTM using three social distancing scores. This comprehensive study captures the nature of counties growth in cases at a very micro-level using growth communities, demographic factors, and social distancing performance to help government agencies utilize known information to make appropriate decisions regarding which potential counties to target resources and funding to.
We consider the problem of computing the rank of an m x n matrix A over a field. We present a randomized algorithm to find a set of r = rank(A) linearly independent columns in ~O(|A| + r^omega) field operations, where |A| denotes the number of nonzer o entries in A and omega < 2.38 is the matrix multiplication exponent. Previously the best known algorithm to find a set of r linearly independent columns is by Gaussian elimination, with running time O(mnr^{omega-2}). Our algorithm is faster when r < max(m,n), for instance when the matrix is rectangular. We also consider the problem of computing the rank of a matrix dynamically, supporting the operations of rank one updates and additions and deletions of rows and columns. We present an algorithm that updates the rank in ~O(mn) field operations. We show that these algorithms can be used to obtain faster algorithms for various problems in numerical linear algebra, combinatorial optimization and dynamic data structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا