ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast Matrix Rank Algorithms and Applications

114   0   0.0 ( 0 )
 نشر من قبل Ho Yee Cheung
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of computing the rank of an m x n matrix A over a field. We present a randomized algorithm to find a set of r = rank(A) linearly independent columns in ~O(|A| + r^omega) field operations, where |A| denotes the number of nonzero entries in A and omega < 2.38 is the matrix multiplication exponent. Previously the best known algorithm to find a set of r linearly independent columns is by Gaussian elimination, with running time O(mnr^{omega-2}). Our algorithm is faster when r < max(m,n), for instance when the matrix is rectangular. We also consider the problem of computing the rank of a matrix dynamically, supporting the operations of rank one updates and additions and deletions of rows and columns. We present an algorithm that updates the rank in ~O(mn) field operations. We show that these algorithms can be used to obtain faster algorithms for various problems in numerical linear algebra, combinatorial optimization and dynamic data structure.



قيم البحث

اقرأ أيضاً

127 - German Ros , Julio Guerrero 2015
We address the problem of efficient sparse fixed-rank (S-FR) matrix decomposition, i.e., splitting a corrupted matrix $M$ into an uncorrupted matrix $L$ of rank $r$ and a sparse matrix of outliers $S$. Fixed-rank constraints are usually imposed by th e physical restrictions of the system under study. Here we propose a method to perform accurate and very efficient S-FR decomposition that is more suitable for large-scale problems than existing approaches. Our method is a grateful combination of geometrical and algebraical techniques, which avoids the bottleneck caused by the Truncated SVD (TSVD). Instead, a polar factorization is used to exploit the manifold structure of fixed-rank problems as the product of two Stiefel and an SPD manifold, leading to a better convergence and stability. Then, closed-form projectors help to speed up each iteration of the method. We introduce a novel and fast projector for the $text{SPD}$ manifold and a proof of its validity. Further acceleration is achieved using a Nystrom scheme. Extensive experiments with synthetic and real data in the context of robust photometric stereo and spectral clustering show that our proposals outperform the state of the art.
The design of online algorithms has tended to focus on algorithms with worst-case guarantees, e.g., bounds on the competitive ratio. However, it is well-known that such algorithms are often overly pessimistic, performing sub-optimally on non-worst-ca se inputs. In this paper, we develop an approach for data-driven design of online algorithms that maintain near-optimal worst-case guarantees while also performing learning in order to perform well for typical inputs. Our approach is to identify policy classes that admit global worst-case guarantees, and then perform learning using historical data within the policy classes. We demonstrate the approach in the context of two classical problems, online knapsack and online set cover, proving competitive bounds for rich policy classes in each case. Additionally, we illustrate the practical implications via a case study on electric vehicle charging.
The minimum degree algorithm is one of the most widely-used heuristics for reducing the cost of solving large sparse systems of linear equations. It has been studied for nearly half a century and has a rich history of bridging techniques from data st ructures, graph algorithms, and scientific computing. In this paper, we present a simple but novel combinatorial algorithm for computing an exact minimum degree elimination ordering in $O(nm)$ time, which improves on the best known time complexity of $O(n^3)$ and offers practical improvements for sparse systems with small values of $m$. Our approach leverages a careful amortized analysis, which also allows us to derive output-sensitive bounds for the running time of $O(min{msqrt{m^+}, Delta m^+} log n)$, where $m^+$ is the number of unique fill edges and original edges that the algorithm encounters and $Delta$ is the maximum degree of the input graph. Furthermore, we show there cannot exist an exact minimum degree algorithm that runs in $O(nm^{1-varepsilon})$ time, for any $varepsilon > 0$, assuming the strong exponential time hypothesis. This fine-grained reduction goes through the orthogonal vectors problem and uses a new low-degree graph construction called $U$-fillers, which act as pathological inputs and cause any minimum degree algorithm to exhibit nearly worst-case performance. With these two results, we nearly characterize the time complexity of computing an exact minimum degree ordering.
376 - Linjian Ma , Chao Yang 2021
Simulating quantum algorithms on classical computers is challenging when the system size, i.e., the number of qubits used in the quantum algorithm, is moderately large. However, some quantum algorithms and the corresponding quantum circuits can be si mulated efficiently on a classical computer if the input quantum state is a low-rank tensor and all intermediate states of the quantum algorithm can be represented or approximated by low-rank tensors. In this paper, we examine the possibility of simulating a few quantum algorithms by using low-rank canonical polyadic (CP) decomposition to represent the input and all intermediate states of these algorithms. Two rank reduction algorithms are used to enable efficient simulation. We show that some of the algorithms preserve the low-rank structure of the input state and can thus be efficiently simulated on a classical computer. However, the rank of the intermediate states in other quantum algorithms can increase rapidly, making efficient simulation more difficult. To some extent, such difficulty reflects the advantage or superiority of a quantum computer over a classical computer. As a result, understanding the low-rank structure of a quantum algorithm allows us to identify algorithms that can benefit significantly from quantum computers.
184 - Yu Tong , Dong An , Nathan Wiebe 2020
Preconditioning is the most widely used and effective way for treating ill-conditioned linear systems in the context of classical iterative linear system solvers. We introduce a quantum primitive called fast inversion, which can be used as a precondi tioner for solving quantum linear systems. The key idea of fast inversion is to directly block-encode a matrix inverse through a quantum circuit implementing the inversion of eigenvalues via classical arithmetics. We demonstrate the application of preconditioned linear system solvers for computing single-particle Greens functions of quantum many-body systems, which are widely used in quantum physics, chemistry, and materials science. We analyze the complexities in three scenarios: the Hubbard model, the quantum many-body Hamiltonian in the planewave-dual basis, and the Schwinger model. We also provide a method for performing Greens function calculation in second quantization within a fixed particle manifold and note that this approach may be valuable for simulation more broadly. Besides solving linear systems, fast inversion also allows us to develop fast algorithms for computing matrix functions, such as the efficient preparation of Gibbs states. We introduce two efficient approaches for such a task, based on the contour integral formulation and the inverse transform respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا