ترغب بنشر مسار تعليمي؟ اضغط هنا

On Social-Temporal Group Query with Acquaintance Constraint

57   0   0.0 ( 0 )
 نشر من قبل Yi-Ling Chen
 تاريخ النشر 2011
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English
 تأليف De-Nian Yang




اسأل ChatGPT حول البحث

Three essential criteria are important for activity planning, including: (1) finding a group of attendees familiar with the initiator, (2) ensuring each attendee in the group to have tight social relations with most of the members in the group, and (3) selecting an activity period available for all attendees. Therefore, this paper proposes Social-Temporal Group Query to find the activity time and attendees with the minimum total social distance to the initiator. Moreover, this query incorporates an acquaintance constraint to avoid finding a group with mutually unfamiliar attendees. Efficient processing of the social-temporal group query is very challenging. We show that the problem is NP-hard via a proof and formulate the problem with Integer Programming. We then propose two efficient algorithms, SGSelect and STGSelect, which include effective pruning techniques and employ the idea of pivot time slots to substantially reduce the running time, for finding the optimal solutions. Experimental results indicate that the proposed algorithms are much more efficient and scalable. In the comparison of solution quality, we show that STGSelect outperforms the algorithm that represents manual coordination by the initiator.

قيم البحث

اقرأ أيضاً

209 - Guliu Liu , Lei Li , Guanfeng Liu 2021
Traditional social group analysis mostly uses interaction models, event models, or other methods to identify and distinguish groups. This type of method can divide social participants into different groups based on their geographic location, social r elationships, and/or related events. However, in some applications, it is necessary to make more specific restrictions on the members and the interaction between members of the group. Generally, graph pattern matching (GPM) is used to solve this problem. However, the existing GPM methods rarely consider the rich contextual information of nodes and edges to measure the credibility between members. In this paper, a social group query problem that needs to consider the trust between members of the group is proposed. To solve this problem, we propose a Strong Simulation GPM algorithm (NTSS) based on the exploration of pattern Node Topological ordered sequence. Aiming at the inefficiency of the NTSS algorithm when matching pattern graph with multiple nodes with zero in-degree and the problem of repeated calculation of matching edges shared by multiple matching subgraphs, two optimization strategies are proposed. Finally, we conduct verification experiments on the effectiveness and efficiency of the NTSS algorithm and the algorithms with the optimization strategies on four social network datasets in real applications. Experimental results show that the NTSS algorithm is significantly better than the existing multi-constrained GPM algorithm, and the NTSS_Inv_EdgC algorithm, which combines two optimization strategies, greatly improves the efficiency of the NTSS algorithm.
A key challenge in mining social media data streams is to identify events which are actively discussed by a group of people in a specific local or global area. Such events are useful for early warning for accident, protest, election or breaking news. However, neither the list of events nor the resolution of both event time and space is fixed or known beforehand. In this work, we propose an online spatio-temporal event detection system using social media that is able to detect events at different time and space resolutions. First, to address the challenge related to the unknown spatial resolution of events, a quad-tree method is exploited in order to split the geographical space into multiscale regions based on the density of social media data. Then, a statistical unsupervised approach is performed that involves Poisson distribution and a smoothing method for highlighting regions with unexpected density of social posts. Further, event duration is precisely estimated by merging events happening in the same region at consecutive time intervals. A post processing stage is introduced to filter out events that are spam, fake or wrong. Finally, we incorporate simple semantics by using social media entities to assess the integrity, and accuracy of detected events. The proposed method is evaluated using different social media datasets: Twitter and Flickr for different cities: Melbourne, London, Paris and New York. To verify the effectiveness of the proposed method, we compare our results with two baseline algorithms based on fixed split of geographical space and clustering method. For performance evaluation, we manually compute recall and precision. We also propose a new quality measure named strength index, which automatically measures how accurate the reported event is.
74 - Fei Yu , Feiyi Fan , Shouxu Jiang 2019
Social activities play an important role in peoples daily life since they interact. For recommendations based on social activities, it is vital to have not only the activity information but also individuals social relations. Thanks to the geo-social networks and widespread use of location-aware mobile devices, massive geo-social data is now readily available for exploitation by the recommendation system. In this paper, a novel group recommendation method, called attentive geo-social group recommendation, is proposed to recommend the target user with both activity locations and a group of users that may join the activities. We present an attention mechanism to model the influence of the target user $u_T$ in candidate user groups that satisfy the social constraints. It helps to retrieve the optimal user group and activity topic candidates, as well as explains the group decision-making process. Once the user group and topics are retrieved, a novel efficient spatial query algorithm SPA-DF is employed to determine the activity location under the constraints of the given user group and activity topic candidates. The proposed method is evaluated in real-world datasets and the experimental results show that the proposed model significantly outperforms baseline methods.
COVID-19 has caused lasting damage to almost every domain in public health, society, and economy. To monitor the pandemic trend, existing studies rely on the aggregation of traditional statistical models and epidemic spread theory. In other words, hi storical statistics of COVID-19, as well as the population mobility data, become the essential knowledge for monitoring the pandemic trend. However, these solutions can barely provide precise prediction and satisfactory explanations on the long-term disease surveillance while the ubiquitous social media resources can be the key enabler for solving this problem. For example, serious discussions may occur on social media before and after some breaking events take place. These events, such as marathon and parade, may impact the spread of the virus. To take advantage of the social media data, we propose a novel framework, Social Media enhAnced pandemic suRveillance Technique (SMART), which is composed of two modules: (i) information extraction module to construct heterogeneous knowledge graphs based on the extracted events and relationships among them; (ii) time series prediction module to provide both short-term and long-term forecasts of the confirmed cases and fatality at the state-level in the United States and to discover risk factors for COVID-19 interventions. Extensive experiments show that our method largely outperforms the state-of-the-art baselines by 7.3% and 7.4% in confirmed case/fatality prediction, respectively.
The structure of communication networks is an important determinant of the capacity of teams, organizations and societies to solve policy, business and science problems. Yet, previous studies reached contradictory results about the relationship betwe en network structure and performance, finding support for the superiority of both well-connected efficient and poorly connected inefficient network structures. Here we argue that understanding how communication networks affect group performance requires taking into consideration the social learning strategies of individual team members. We show that efficient networks outperform inefficient networks when individuals rely on conformity by copying the most frequent solution among their contacts. However, inefficient networks are superior when individuals follow the best member by copying the group member with the highest payoff. In addition, groups relying on conformity based on a small sample of others excel at complex tasks, while groups following the best member achieve greatest performance for simple tasks. Our findings reconcile contradictory results in the literature and have broad implications for the study of social learning across disciplines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا