ترغب بنشر مسار تعليمي؟ اضغط هنا

ASAS Light Curves of Intermediate Mass Eclipsing Binaries and the Parameters of HI Mon

378   0   0.0 ( 0 )
 نشر من قبل Stephen Williams
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a catalog of 56 candidate intermediate mass eclipsing binary systems extracted from the 3rd data release of the All Sky Automated Survey. We gather pertinent observational data and derive orbital properties, including ephemerides, for these systems as a prelude to anticipated spectroscopic observations. We find that 37 of the 56, or ~66% of the systems are not identified in the Simbad Astronomical Database as known binaries. As a specific example, we show spectroscopic data obtained for the system HI Mon (B0 V + B0.5 V) observed at key orbital phases based on the computed ephemeris, and we present a combined spectroscopic and photometric solution for the system and give stellar parameters for each component.



قيم البحث

اقرأ أيضاً

We present the results of a spectroscopic campaign on eclipsing binaries with long orbital period (P = 20 - 75 d) carried out with the CHIRON spectrograph. Physical and orbital solutions for seven systems were derived from the V-band, and I-band ASAS , WASP, and TESS photometry, while radial velocities were calculated from high quality optical spectra using a two-dimensional cross-correlation technique. The atmospheric parameters of the stars have been determined from the separated spectra. Most of our targets are composed of evolved stars (sub-giants or red giants) but two systems show components in different phases of evolution and one possible merger. For four binaries the masses and radii of the components were obtained with precision better than 3%. These objects provide very valuable information on stellar evolution.
The Kepler Mission has provided unprecedented, nearly continuous photometric data of $sim$200,000 objects in the $sim$105 deg$^{2}$ field of view from the beginning of science operations in May of 2009 until the loss of the second reaction wheel in M ay of 2013. The Kepler Eclipsing Binary Catalog contains information including but not limited to ephemerides, stellar parameters and analytical approximation fits for every known eclipsing binary system in the Kepler Field of View. Using Target Pixel level data collected from Kepler in conjunction with the Kepler Eclipsing Binary Catalog, we identify false positives among eclipsing binaries, i.e. targets that are not eclipsing binaries themselves, but are instead contaminated by eclipsing binary sources nearby on the sky and show eclipsing binary signatures in their light curves. We present methods for identifying these false positives and for extracting new light curves for the true source of the observed binary signal. For each source, we extract three separate light curves for each quarter of available data by optimizing the signal-to-noise ratio, the relative percent eclipse depth and the flux eclipse depth. We present 289 new eclipsing binaries in the Kepler Field of View that were not targets for observation, and these have been added to the Catalog. An online version of this Catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
ASAS is a long term project to monitor bright variable stars over the whole sky. It has discovered 50,122 variables brighter than V < 14 mag south of declination +28 degrees, and among them 11,099 eclipsing binaries. We present a preliminary analysis of 5,384 contact, 2,957 semi-detached, and 2,758 detached systems. The statistics of the distribution provides a qualitative confirmation of decades old idea of Flannery and Lucy that W UMa type binaries evolve through a series of relaxation oscillations: ASAS finds comparable number of contact and semidetached systems. The most surprising result is a very small number of detached eclipsing binaries with periods P < 1 day, the systems believed to be the progenitors of W UMa stars. As many (perhaps all) contact binaries have companions, there is a possibility that some were formed in a Kozai cycle, as suggested by Eggleton and his associates.
The two objects 1SWASP J150822.80-054236.9 and 1SWASP J160156.04+202821.6 were initially detected from their SuperWASP archived light curves as candidate eclipsing binaries with periods close to the short-period cut-off of the orbital period distribu tion of main sequence binaries, at ~0.2 d. Here, using INT spectroscopic data, we confirm them as double-lined spectroscopic and eclipsing binaries, in contact configuration. Following modelling of their visual light curves and radial velocity curves, we determine their component and system parameters to precisions between ~2 and 11%. The former system contains 1.07 and 0.55 M_sun components, with radii of 0.90 and 0.68 R_sun respectively; its primary exhibits pulsations with period 1/6 the orbital period of the system. The latter contains 0.86 and 0.57 M_sun components, with radii of 0.75 and 0.63R_sun respectively.
(Abridged) Eclipsing, spectroscopic double-lined binary star systems (SB2) are excellent laboratories for calibrating theories of stellar interior structure and evolution. We aim to investigate the mass discrepancy in binary stars. We study the effec t of near-core mixing on the mass of the convective core of the stars and interpret the results in the context of the mass discrepancy. Two scenarios are considered, where individual stellar components of a binary system are treated independent of each other and where they are forced to have the same age and initial chemical composition. We find that the mass discrepancy is present in our sample and that it is anti-correlated with the surface gravity of the star. No correlations are found with other fundamental and atmospheric parameters, including the stellar mass. The mass discrepancy can be partially accounted for by increasing the amount of near-core mixing in stellar evolution models. We also find that ignoring the microturbulent velocity and turbulent pressure in stellar atmosphere models of hot evolved stars results in overestimation of their effective temperature by up to 8%. Together with enhanced near-core mixing, this can almost entirely account for the 30% mass discrepancy found for the evolved primary component of V380 Cyg. We find a strong link between the mass discrepancy and the convective core mass. The mass discrepancy can be solved by considering the combined effect of extra near-core boundary mixing and consistent treatment in the spectrum analysis of hot evolved stars. Our binary modelling results in convective core masses between 17 and 35% of the stellar mass, in excellent agreement with results from gravity-mode asteroseismology of single stars. This implies larger helium core masses near the end of the main sequence than anticipated so far.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا