ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting phase fluctuations in SmFeAsO$_{0.8}$F$_{0.2}$ from diamagnetism at low magnetic field above $T_{c}$

120   0   0.0 ( 0 )
 نشر من قبل Giacomo Prando
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconducting fluctuations (SF) in SmFeAsO$_{0.8}$F$_{0.2}$ (characterized by superconducting transition temperature $T_{c} simeq 52.3$ K) are investigated by means of isothermal high-resolution dc magnetization measurements. The diamagnetic response to magnetic fields up to 1 T above $T_{c}$ is similar to what previously reported for underdoped cuprate superconductors and it can be justified in terms of metastable superconducting islands at non-zero order parameter lacking of long-range coherence because of strong phase fluctuations. In the high-field regime ($H gtrsim 1.5$ T) scaling arguments predicted on the basis of the Ginzburg-Landau theory of conventional SF are found to be applicable, at variance with what observed in the low-field regime. This fact enlightens that two different phenomena are simultaneously present in the fluctuating diamagnetism, namely the phase SF of novel character and the conventional SF. High magnetic fields (1.5 T $lesssim H ll H_{c2}$) are found to suppress the former while leaving unaltered the latter one.



قيم البحث

اقرأ أيضاً

To probe manifestations of multiband superconductivity in oxypnictides, we measured the angular dependence of magnetic torque $tau(theta)$ in the mixed state of SmO$_{0.8}$F$_{0.2}$FeAs single crystals as functions of temperature $T$ and high magneti c field $H$ up to 30 T. We show that the effective mass anisotropy parameter $gamma$ extracted from $tau(theta)$, can be greatly overestimated if the strong paramagnetism of Sm or Fe ions is not properly taken into account. The correctly extracted $gamma$ depends on both $T$ and $H$, saturating at $gamma simeq 9$ at lower temperatures. Neither the London penetration depth nor the superfluid density is affected by high fields fields up to the upper critical field. Our results indicate two strongly-coupled superconducting gaps of nearly equal magnitudes.
In this brief report an attempt is made for a mise-a-point of the subject of the phase fluctuations of the superconducting order parameter above Tc in cuprates, particularly as they appear in underdoped compounds. Measurements of torque magnetometry, Nernst effect and isothermal diamagnetic magnetization curves published in the last years are taken into consideration. Although by different experimental approaches and in different magnetic field ranges it can be stated that vortex-antivortex excitations and phase fluctuations among islands of local non-zero order parameter lacking of long range coherence do occur in a relevant temperature range above Tc, particularly in underdoped compounds. The role of the diamagnetic magnetization curves on approaching Tc from above in opening the field with clear signature is remarked, while enlightening comparison with other approaches appear possible.
The low-temperature antiferromagnetic state of the Sm-ions in both nonsuperconducting SmFeAsO and superconducting SmFeAsO$_{0.9}$F$_{0.1}$ single crystals was studied by magnetic torque, magnetization, and magnetoresistance measurements in magnetic f ields up to 60~T and temperatures down to 0.6~K. We uncover in both compounds a distinct rearrangement of the antiferromagnetically ordered Sm-moments near $35-40$~T. This is seen in both, static and pulsed magnetic fields, as a sharp change in the sign of the magnetic torque, which is sensitive to the magnetic anisotropy and hence to the magnetic moment in the $ab$-plane, ({it i.e.} the FeAs-layers), and as a jump in the magnetization for magnetic fields perpendicular to the conducting planes. This rearrangement of magnetic ordering in $35-40$~T is essentially temperature independent and points towards a canted or a partially polarized magnetic state in high magnetic fields. However, the observed value for the saturation moment above this rearrangement, suggests that the complete suppression of the antiferromagnetism related to the Sm-moments would require fields in excess of 60~T. Such a large field value is particularly remarkable when compared to the relatively small N{e}el temperature $T_{rm N}simeq5$~K, suggesting very anisotropic magnetic exchange couplings. At the transition, magnetoresistivity measurements show a crossover from positive to negative field-dependence, indicating that the charge carriers in the FeAs planes are sensitive to the magnetic configuration of the rare-earth elements. This is indicates a finite magnetic/electronic coupling between the SmO and the FeAs layers which are likely to mediate the exchange interactions leading to the long range antiferromagnetic order of the Sm ions.
High resolution SQUID magnetization measurements in lead nanoparticles are used to study the fluctuating diamagnetism in zero-dimensional condition, namely for particle size d lesser than the coherence length. The diamagnetic magnetization Mdia (H, T = const) as a function of the field H at constant temperature is reported in the critical region and compared with the behaviour in the temperature range where the first-order fluctuation correction is expected to hold. The magnetization curves are analysed in the framework of exact fluctuation theories based on the Ginzburg-Landau functional for the coherence length much greater than d. The role of the upturn field Hup where Mdia reverses the field dependence is discussed and its relevance for the study of the fluctuating diamagnetism, particularly in the critical region where the first-order fluctuation correction breaks down, is pointed out. The size and temperature dependence of Hup is theoretically derived and compared to the experimental data. The relevance and the magnetization curves for non-evanescent field and of the upturn field for the study of the fluctuating diamagnetism above the superconducting transition temperature is emphasized.
131 - S. Sanna , R. De Renzi , G. Lamura 2009
We present uSR investigations on SmFeAsO_1-xF_x showing coexistence of magnetic order and superconductivity only in a very narrow F-doping range. The sharp crossover between the two types of order is similar to that observed in LaFeAsO_1-xF_x, sugges ting a common behavior for the 1111 pnictides. The analysis of the muon asymmetry demonstrates that the coexistence must be nanoscopic, i.e. the two phases must be finely interspersed over a typical length-scale of few nm. In this regime both the magnetic and the superconducting transition temperatures collapse to very low values. Our data suggest a competition between the two order parameters
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا