ﻻ يوجد ملخص باللغة العربية
We present uSR investigations on SmFeAsO_1-xF_x showing coexistence of magnetic order and superconductivity only in a very narrow F-doping range. The sharp crossover between the two types of order is similar to that observed in LaFeAsO_1-xF_x, suggesting a common behavior for the 1111 pnictides. The analysis of the muon asymmetry demonstrates that the coexistence must be nanoscopic, i.e. the two phases must be finely interspersed over a typical length-scale of few nm. In this regime both the magnetic and the superconducting transition temperatures collapse to very low values. Our data suggest a competition between the two order parameters
We probe the local quasiparticles density-of-states in micron-sized SmFeAsO$_{1-x}$F$_{x}$ single-crystals by means of Scanning Tunnelling Spectroscopy. Spectral features resemble those of cuprates, particularly a dip-hump-like structure developed at
We study the electronic structure of the SmFeAsO(1-x)F(x) alloy by means of first-principle calculations. We find that, contrary to common believe, F-doping does not change the charge balance between electrons and holes free-carriers in SmFeAsO(1-x)F
We report the Hall resistivity, $rho_{xy}$ of polycrystalline SmFeAsO$_{1-x}$F$_{x}$ for four different fluorine concentrations from the onset of superconductivity through the collapse of the structural phase transition. For the two more highly-doped
The electrical resistivity, crystalline structure and electronic properties calculated from the experimentally measured atomic positions of the compound SmFeAsO$_{0.81}$F$_{0.19}$ have been studied up to pressures ~20GPa. The correlation between the
We report $^{75}$As nuclear magnetic resonance (NMR) / nuclear quadrupole resonance (NQR) and transmission electron microscopy (TEM) studies on LaFeAsO$_{1-x}$F$_{x}$. There are two superconducting domes in this material. The first one appears at 0.0