ترغب بنشر مسار تعليمي؟ اضغط هنا

Super Fast and Quality Azimuth Disambiguation

137   0   0.0 ( 0 )
 نشر من قبل George Rudenko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The paper presents the possibility of fast and quality azimuth disambiguation of vector magnetogram data regardless of location on the solar disc. The new Super Fast and Quality (SFQ) code of disambiguation is tried out on well-known models of Metcalf et al. (2006), Leka et al. (2009) and artificial model of fixed configuration AR 10930 (Rudenko et al., 2010). We make comparison of Hinode SOT SP vector magnetograms of AR 10930 disambiguated with three codes: SFQ, NPFC (Georgoulis, 2005), and SME (Rudenko et al., 2010). We exemplify the SFQ disambiguation of SDO/HMI measurements of the full disc. The preliminary examination indicates that the SFQ algorithm provides better quality than NPFC and is comparable to SME. In contrast to other codes, SFQ supports relatively high quality of results regardless of the magnetogram proximity to the limb (when being very close to the limb, it is efficient unlike all other algorithms).

قيم البحث

اقرأ أيضاً

250 - R. D. Jeffries 2010
At fast rotation rates the coronal activity of G- and K-type stars has been observed to saturate and then decline again at even faster rotation rates -- a phenomenon dubbed super-saturation. In this paper we investigate coronal activity in fast-rotat ing M-dwarfs using deep XMM-Newton observations of 97 low-mass stars of known rotation period in the young open cluster NGC 2547, and combine these with published X-ray surveys of low-mass field and cluster stars of known rotation period. Like G- and K-dwarfs, we find that M-dwarfs exhibit increasing coronal activity with decreasing Rossby number N_R, the ratio of period to convective turnover time, and that activity saturates at L_x/L_bol ~ 10^-3 for log N_R < -0.8. However, super-saturation is not convincingly displayed by M-dwarfs, despite the presence of many objects in our sample with log N_R < -1.8, where super-saturation is observed to occur in higher mass stars. Instead, it appears that a short rotation period is the primary predictor of super-saturation; P <=0.3d for K-dwarfs and perhaps P <=0.2d for M-dwarfs. These observations favour the centrifugal stripping model for super-saturation, where coronal structures are forced open or become radiatively unstable as the Keplerian co-rotation radius moves inside the X-ray emitting coronal volume.
Possibilities in principle for satisfactory removal of the 180-azimuthal ambiguity in the transverse field of vector magnetograms and the extrapolation of magnetic fields independently of their position on the solar disk are shown. Revealed here is a n exact correspondence between the estimated field and the nonpotential loop structure on the limb. The Metropoliss algorithm modified to work in spherical geometry is used to resolve the azimuthal ambiguity. Based on a version of the optimization method from Rudenko and Myshyakov (2009), we use corrected magnetograms as boundary conditions for magnetic field extrapolation in the nonlinear force-free approximation.
153 - G. Monari , B. Famaey , A. Siebert 2019
The second data release of the Gaia mission has revealed, in stellar velocity and action space, multiple ridges, the exact origin of which is still debated. Recently, we demonstrated that a large Galactic bar with pattern speed 39 km/s/kpc does creat e most of the observed ridges. Among those ridges, the Hercules moving group would then be associated to orbits trapped at the co-rotation resonance of the bar. Here we show that a distinctive prediction of such a model is that the angular momentum of Hercules at the Suns radius must significantly decrease with increasing Galactocentric azimuth, i.e. when getting closer to the major axis of the bar. We show that such a dependence of the angular momentum of trapped orbits on the azimuth would on the other hand not happen close to the outer Lindblad resonance of a faster bar, unless the orbital distribution is still far from phase-mixed, namely for a bar perturbation younger than ~ 2 Gyr. Using Gaia DR2 and Bayesian distances from the StarHorse code, and tracing the average Galactocentric radial velocity as a function of angular momentum and azimuth, we show that the Hercules angular momentum changes significantly with azimuth as expected for the co-rotation resonance of a dynamically old large bar.
Blind pansharpening addresses the problem of generating a high spatial-resolution multi-spectral (HRMS) image given a low spatial-resolution multi-spectral (LRMS) image with the guidance of its associated spatially misaligned high spatial-resolution panchromatic (PAN) image without parametric side information. In this paper, we propose a fast approach to blind pansharpening and achieve state-of-the-art image reconstruction quality. Typical blind pansharpening algorithms are often computationally intensive since the blur kernel and the target HRMS image are often computed using iterative solvers and in an alternating fashion. To achieve fast blind pansharpening, we decouple the solution of the blur kernel and of the HRMS image. First, we estimate the blur kernel by computing the kernel coefficients with minimum total generalized variation that blur a downsampled version of the PAN image to approximate a linear combination of the LRMS image channels. Then, we estimate each channel of the HRMS image using local Laplacian prior to regularize the relationship between each HRMS channel and the PAN image. Solving the HRMS image is accelerated by both parallelizing across the channels and by fast numerical algorithms for each channel. Due to the fast scheme and the powerful priors we used on the blur kernel coefficients (total generalized variation) and on the cross-channel relationship (local Laplacian prior), numerical experiments demonstrate that our algorithm outperforms state-of-the-art model-based counterparts in terms of both computational time and reconstruction quality of the HRMS images.
The Zeeman effect is of limited utility for probing the magnetism of the quiet solar chromosphere. The Hanle effect in some spectral lines is sensitive to such magnetism, but the interpretation of the scattering polarization signals requires taking i nto account that the chromospheric plasma is highly inhomogeneous and dynamic (i.e., that the magnetic field is not the only cause of symmetry breaking). Here we investigate the reliability of a well-known formula for mapping the azimuth of chromospheric magnetic fields directly from the scattering polarization observed in the ion{Ca}{2}~8542~AA, line, which is typically in the saturation regime of the Hanle effect. To this end, we use the Stokes profiles of the ion{Ca}{2}~8542~AA, line computed with the PORTA radiative transfer code in a three-dimensional (3D) model of the solar chromosphere, degrading them to mimic spectropolarimetric observations for a range of telescope apertures and noise levels. The simulated observations are used to obtain the magnetic field azimuth at each point of the field of view, which we compare with the actual values within the 3D model. We show that, apart from intrinsic ambiguities, the method provides solid results. Their accuracy depends more on the noise level than on the telescope diameter. Large-aperture solar telescopes, like DKIST and EST, are needed to achieve the required noise-to-signal ratios using reasonable exposure times.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا