ترغب بنشر مسار تعليمي؟ اضغط هنا

Azimuth ambiguity removal and non-linear force-free extrapolation of near-limb magnetic regions

483   0   0.0 ( 0 )
 نشر من قبل George Rudenko
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Possibilities in principle for satisfactory removal of the 180-azimuthal ambiguity in the transverse field of vector magnetograms and the extrapolation of magnetic fields independently of their position on the solar disk are shown. Revealed here is an exact correspondence between the estimated field and the nonpotential loop structure on the limb. The Metropoliss algorithm modified to work in spherical geometry is used to resolve the azimuthal ambiguity. Based on a version of the optimization method from Rudenko and Myshyakov (2009), we use corrected magnetograms as boundary conditions for magnetic field extrapolation in the nonlinear force-free approximation.


قيم البحث

اقرأ أيضاً

Extrapolations of solar photospheric vector magnetograms into three-dimensional magnetic fields in the chromosphere and corona are usually done under the assumption that the fields are force-free. The field calculations can be improved by preprocessi ng the photospheric magnetograms. We compare two preprocessing methods presently in use, namely the methods of Wiegelmann et al. (2006) and Fuhrmann et al. (2007). The two preprocessing methods were applied to a recently observed vector magnetogram. We examine the changes in the magnetogram effected by the two preprocessing algorithms. Furthermore, the original magnetogram and the two preprocessed magnetograms were each used as input data for nonlinear force-free field extrapolations by means of two different methods, and we analyze the resulting fields. Both preprocessing methods managed to significantly decrease the magnetic forces and magnetic torques that act through the magnetogram area and that can cause incompatibilities with the assumption of force-freeness in the solution domain. Both methods also reduced the amount of small-scale irregularities in the observed photospheric field, which can sharply worsen the quality of the solutions. For the chosen parameter set, the Wiegelmann et al. method led to greater changes in strong-field areas, leaving weak-field areas mostly unchanged, and thus providing an approximation of the magnetic field vector in the chromosphere, while the Fuhrmann et al. method weakly changed the whole magnetogram, thereby better preserving patterns present in the original magnetogram. Both preprocessing methods raised the magnetic energy content of the extrapolated fields to values above the minimum energy, corresponding to the potential field. Also, the fields calculated from the preprocessed magnetograms fulfill the solenoidal condition better than those calculated without preprocessing.
222 - A. Prasad 2014
Here we present a systematic study of force-free field equation for simple axisymmetric configurations in spherical geometry. The condition of separability of solutions in radial and angular variables leads to two classes of solutions: linear and non -linear force-free fields. We have studied these linear solutions Chandrasekhar (1956) and extended the non-linear solutions given in Low & Lou (1990) to the irreducible rational form $n= p/q$, which is allowed for all cases of odd $p$ and to cases of $q>p$ for even $p$. We have further calculated their energies and relative helicities for magnetic field configurations in finite and infinite shell geometries. We demonstrate here a method here to be used to fit observed magnetograms as well as to provide good exact input fields for testing other numerical codes used in reconstruction on the non-linear force-free fields.
The structure and dynamics of the solar corona is dominated by the magnetic field. In most areas in the corona magnetic forces are so dominant that all non-magnetic forces like plasma pressure gradient and gravity can be neglected in the lowest order . This model assumption is called the force-free field assumption, as the Lorentz force vanishes. This can be obtained by either vanishing electric currents (leading to potential fields) or the currents are co-aligned with the magnetic field lines. First we discuss a mathematically simpler approach that the magnetic field and currents are proportional with one global constant, the so-called linear force-free field approximation. In the generic case, however, the relation between magnetic fields and electric currents is nonlinear and analytic solutions have been only found for special cases, like 1D or 2D configurations. For constructing realistic nonlinear force-free coronal magnetic field models in 3D, sophisticated numerical computations are required and boundary conditions must be obtained from measurements of the magnetic field vector in the solar photosphere. This approach is currently of large interests, as accurate measurements of the photospheric field become available from ground-based (for example SOLIS) and space-born (for example Hinode and SDO) instruments. If we can obtain accurate force-free coronal magnetic field models we can calculate the free magnetic energy in the corona, a quantity which is important for the prediction of flares and coronal mass ejections. Knowledge of the 3D structure of magnetic field lines also help us to interpret other coronal observations, e.g., EUV-images of the radiating coronal plasma.
Quantum electrodynamics (QED) effects may be included in physical processes of magnetar and pulsar magnetospheres with strong magnetic fields. Involving the quantum corrections, the Maxwell electrodynamics is modified to non-linear electrodynamics. I n this work, we study the force-free magnetosphere in non-linear electrodynamics in a general framework. The pulsar equation describing a steady and axisymmetric magnetosphere is derived, which now admits solutions with corrections. We derive the first-order non-linear corrections to the near-zone dipole magnetosphere in some popular non-linear effective theories. The field lines of the corrected dipole tend to converge on the rotational axis so that the fields in the polar region are stronger compared to the pure dipole case.
Adopting the thermal free-free emission mechanism, the coronal and chromospheric magnetic fields are derived from the polarization and spectral observations with the Nobeyama Radioheliograph at 1.76 cm. The solar active regions (AR) located near the disk center observed on January 8, 2015 (AR 12257) and December 4, 2016 (AR 12615) are used for the estimate of the chromospheric and coronal magnetic fields with the microwave radio observations. We compare solar radio maps of active regions for both intensity and circularly polarized component with the optical maps from observations with the Helioseismic and Magnetic Imager and the chromosphere and corona transition region images obtained with the Atmospheric Imaging Assembly instrument, on board the Solar Dynamic Observatory. We notice from the comparison between radio maps of both AR that the circular polarization degree in the AR 12257 is about 2 percent, but the AR 12615 has a higher existent value by 3 percent. Radio observations provide us for direct measurements of magnetic fields in the chromospheric and coronal layers. We estimate the coronal magnetic fields using the Atmospheric Imaging Assembly observations by adopting magnetic loops in the corona over some patches with weak photospheric magnetic fields. The coronal magnetic field derived from the Atmospheric Imaging Assembly data was from 90 to 240 Gauss. We also study the coronal magnetic fields based on the structure of the extrapolated field, where the result of the magnetic fields was in the range from 35 to 145 Gauss, showing that the difference in the coronal magnetic fields between both results is attributed to the assumption of the force-free approximation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا