ترغب بنشر مسار تعليمي؟ اضغط هنا

Paramagnetic tunneling systems and their contribution to the polarization echo in glasses (extended)

42   0   0.0 ( 0 )
 نشر من قبل Alexander Borisenko
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Startling magnetic effects on the spontaneous polarization echo in some silicate glasses at low and ultra-low temperatures have been reported in the last decade or so. Though some progress in search of an explanation has been made by considering the nuclear quadrupole dephasing of tunneling particles, here we show that the effect of a magnetic field can be understood quantitatively by means of a special tunnel mechanism associated with paramagnetic impurities. For the Fe-, Cr- and Nd-contaminated glasses we provide reasonable fits to the published data as a function of applied magnetic field and temperature.

قيم البحث

اقرأ أيضاً

In this paper we argue that the electron skew-scattering on paramagnetic impurities in non-magnetic systems, such as bulk semiconductors, possesses a remarkable fingerprint allowing to differentiate it directly from other microscopic mechanisms of th e emergent Hall response. We demonstrate theoretically that the exchange interaction between the impurity magnetic moment and mobile electrons leads to the emergence of an electric Hall current persisting even at zero electron spin polarization. We describe two microscopic mechanisms behind this effect, namely the exchange interaction assisted skew-scattering and the conversion of the SHE induced transverse spin current to the charge one owing to the difference between the spin-up and spin-down conductivities. We propose an essentially all-electric scheme based on a spin-injection ferromagnetic-semiconductor device which allows one to reveal the effect of paramagnetic impurities on the Hall phenomena via the detection of the spin polarization independent terms in the Hall voltage.
We study I-V characteristics of an all-II-VI semiconductor resonant tunneling diode with dilute magnetic impurities in the quantum well layer. Bound magnetic polaron states form in the vicinity of potential fluctuations at the well interface while tu nneling electrons traverse these interface quantum dots. The resulting microscopic magnetic order lifts the degeneracy of the resonant tunneling states. Although there is no macroscopic magnetization, the resulting resonant tunneling current is highly spin polarized at zero magnetic field due to the zero field splitting. Detailed modeling demonstrates that the local spin polarization efficiency exceeds 90% without an external magnetic field.
Low temperature properties of glasses are derived within a generalized tunneling model, considering the motion of charged particles on a closed path in a double-well potential. The presence of a magnetic induction field B violates the time reversal i nvariance due to the Aharonov-Bohm phase, and leads to flux periodic energy levels. At low temperature, this effect is shown to be strongly enhanced by dipole-dipole and elastic interactions between tunneling systems and becomes measurable. Thus, the recently observed strong sensitivity of the electric permittivity to weak magnetic fields can be explained. In addition, superimposed oscillations as a function of the magnetic field are predicted.
117 - A. Sozzetti , M. Damasso 2014
The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main phy sical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.
We investigate the quantum dynamics of Two-Level Systems (TLS) in glasses at low temperatures (1 K and below). We study an ensemble of TLSs coupled to phonons. By integrating out the phonons within the framework of the Gorini-Kossakowski-Sudarshan-Li ndblad (GKSL) master equation, we derive analytically the explicit form of the interactions among TLSs, and of the dissipation terms. We find that the unitary dynamics of the system shows clear signatures of Many-Body Localization physics. We study numerically the time behavior of the concurrence, which measures pairwise entanglement also in non-isolated systems, and show that it presents a power-law decay both in the absence and in the presence of dissipation, if the latter is not too large. These features can be ascribed to the strong, long-tailed disorder characterizing the distributions of the model parameters. Our findings show that assuming ergodicity when discussing TLS physics might not be justified for all kinds of experiments on low-temperature glasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا