ترغب بنشر مسار تعليمي؟ اضغط هنا

Ammonia (J,K) = (1,1) to (4,4) and (6,6) inversion lines detected in the Seyfert 2 galaxy NGC 1068

56   0   0.0 ( 0 )
 نشر من قبل Yiping Ao
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the detection of the ammonia (NH3) (J,K) = (1,1) to (4,4) and (6,6) inversion lines toward the prototypical Seyfert 2 galaxy NGC 1068, made with the Green Bank Telescope (GBT). This is the first detection of ammonia in a Seyfert galaxy. The ortho-to-para-NH3 abundance ratio suggests that the molecule was formed in a warm medium of at least 20 K. For the NH3 column density and fractional abundance, we find (1.09pm0.23)times10^14 cm^-2 and (2.9pm0.6)times10^-8, respectively, from the inner 1.2 kpc of NGC 1068. The kinetic temperature can be constrained to 80pm20 K for the bulk of the molecular gas, while some fraction has an even higher temperature of 140pm30 K.



قيم البحث

اقرأ أيضاً

77 - K. Pounds , S. Vaughan 2006
We use the full broad-band XMM-Newton EPIC data to examine the X-ray spectrum of the nearby Seyfert 2 galaxy NGC 1068, previously shown to be complex with the X-ray continuum being a sum of components reflected/scattered from cold (neutral) and warm (ionised) matter, together with associated emission line spectra. We quantify the neutral and ionised reflectors in terms of the luminosity of the hidden nucleus. Both are relatively weak, a result we interpret on the Unified Seyfert Model by a near side-on view to the putative torus, reducing the visibility of the illuminated inner surface of the torus (the cold reflector), and part of the ionised outflow. A high inclination in NGC 1068 also provides a natural explanation for the large (Compton-thick) absorbing column in the line-of-sight to the nucleus. The emission line fluxes are consistent with the strength of the neutral and ionised continuum components, supporting the robustness of the spectral model.
We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models consider the radiative force due to the active galactic nucleus (AGN), gravitational forces from the supermassive black hole (SMBH), nuclear stellar cluster, and galactic bulge, and a drag force due to the NLR clouds interacting with a hot ambient medium. The derived velocity profile of the NLR gas is compared to that obtained from our previous kinematic models of the NLR using a simple biconical geometry for the outflowing NLR clouds. The results show that the acceleration profile due to radiative line driving is too steep to fit the data and that gravitational forces along cannot slow the clouds down, but with drag forces included, the clouds can slow down to the systemic velocity over the range 100--400 pc, as observed. However, we are not able to match the gradual acceleration of the NLR clouds from ~0 to ~100 pc, indicating the need for additional dynamical studies.
The AGN NGC 2110 presents a peculiar case among the Seyfert 2 galaxies, as it displays also features of radio-loud objects and is classified as FR-I radio galaxy. Here we analyse simultaneous INTEGRAL and Swift data taken in 2008 and 2009. We reconst ruct the spectral energy distribution in order to provide further insight. The combined X-ray spectrum is well represented by an absorbed cut-off power law model plus soft excess. Combining all available data, the spectrum appears flat (photon index 1.25 +- 0.04) with the high-energy cut-off being at 82 +- 9 keV. The intrinsic absorption is moderate (NH = 4E22 1/cm**2), the iron K-alpha line is weak (EW = 114 eV), and no reflection component is detected in the INTEGRAL spectrum. The data indicate that the X-ray spectrum is moderately variable both in flux and spectral shape. The 2008 spectrum is slightly steeper (photon index 1.5, Ec = 90 keV) with the source being brighter, and flatter in 2009 (photon index 1.4, Ec = 120 keV) in the lower flux state. The spectral energy distribution gives a bolometric luminosity of L = 2E44 erg/sec. NGC 2110 appears to be a borderline object between radio loud narrow line Seyfert 1 and radio quiet Seyfert 2. Its spectral energy distribution might indeed be dominated by non-thermal emission arising from the jet.
We present a study of the nearby Seyfert galaxy NGC 1068 using mid- and far- infrared data acquired with the IRAC, IRS, and MIPS instruments aboard the Spitzer Space Telescope. The images show extensive 8 um and 24 um emission coinciding with star fo rmation in the inner spiral approximately 15 (1 kpc) from the nucleus, and a bright complex of star formation 47 (3 kpc) SW of the nucleus. The brightest 8 um PAH emission regions coincide remarkably well with knots observed in an Halpha image. Strong PAH features at 6.2, 7.7, 8.6, and 11.3 um are detected in IRS spectra measured at numerous locations inside, within, and outside the inner spiral. The IRAC colors and IRS spectra of these regions rule out dust heated by the AGN as the primary emission source; the SEDs are dominated by starlight and PAH emission. The equivalent widths and flux ratios of the PAH features in the inner spiral are generally consistent with conditions in a typical spiral galaxy ISM. Interior to the inner spiral, the influence of the AGN on the ISM is evident via PAH flux ratios indicative of a higher ionization parameter and a significantly smaller mean equivalent width than observed in the inner spiral. The brightest 8 and 24 um emission peaks in the disk of the galaxy, even at distances beyond the inner spiral, are located within the ionization cones traced by [O III]/Hbeta, and they are also remarkably well aligned with the axis of the radio jets. Although it is possible that radiation from the AGN may directly enhance PAH excitation or trigger the formation of OB stars that subsequently excite PAH emission at these locations in the inner spiral, the orientation of collimated radiation from the AGN and star formation knots in the inner spiral could be coincidental. (abridged)
141 - Ichi Tanaka , Masafumi Yagi , 2017
Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 10 68. Since these UDOs are located within the projected distance of 45 kpc from the center of NGC 1068, they appear to be associated with NGC 1068. Hereafter, we call them UDO-SW, UDO-NE, and UDO-SE where UDO = Ultra Diffuse Object, SW = south west, NE = north west, and SE = south east; note that UDO-SE was already found in the SDSS Stripe 82 data. Among them, both UDO-NE and UDO-SW appear to show a loop or stream structure around the main body of NGC 1068, providing evidence for the physical connection to NGC 1068. We consider that UDO-SE may be a tidal dwarf galaxy. We also find another UDO-like object that is 2 magnitudes fainter and smaller by a factor of 3 to 5 than those of the three UDOs. This object may belong to a class of low surface brightness galaxy. Since this object is located along the line connecting UDO-NE and UDO-SW, it is suggested that this object is related to the past interaction event that formed the loop by UDO-NE and UDO-SW, thus implying the physical connection to NGC 1068. Another newly-discovered feature is an asymmetric outer one-arm structure emanated from the western edge of the outermost disk of NGC 1068 together with a ripple-like structure at the opposite side. These structures are expected to arise in a late phase of a minor merger according to published numerical simulations of minor mergers. All these lines of evidence show that NGC 1068 experienced a minor merger several billions years ago. We then discuss the minor-merger driven triggering of nuclear activity in the case of NGC 1068.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا