ﻻ يوجد ملخص باللغة العربية
We present a study of the nearby Seyfert galaxy NGC 1068 using mid- and far- infrared data acquired with the IRAC, IRS, and MIPS instruments aboard the Spitzer Space Telescope. The images show extensive 8 um and 24 um emission coinciding with star formation in the inner spiral approximately 15 (1 kpc) from the nucleus, and a bright complex of star formation 47 (3 kpc) SW of the nucleus. The brightest 8 um PAH emission regions coincide remarkably well with knots observed in an Halpha image. Strong PAH features at 6.2, 7.7, 8.6, and 11.3 um are detected in IRS spectra measured at numerous locations inside, within, and outside the inner spiral. The IRAC colors and IRS spectra of these regions rule out dust heated by the AGN as the primary emission source; the SEDs are dominated by starlight and PAH emission. The equivalent widths and flux ratios of the PAH features in the inner spiral are generally consistent with conditions in a typical spiral galaxy ISM. Interior to the inner spiral, the influence of the AGN on the ISM is evident via PAH flux ratios indicative of a higher ionization parameter and a significantly smaller mean equivalent width than observed in the inner spiral. The brightest 8 and 24 um emission peaks in the disk of the galaxy, even at distances beyond the inner spiral, are located within the ionization cones traced by [O III]/Hbeta, and they are also remarkably well aligned with the axis of the radio jets. Although it is possible that radiation from the AGN may directly enhance PAH excitation or trigger the formation of OB stars that subsequently excite PAH emission at these locations in the inner spiral, the orientation of collimated radiation from the AGN and star formation knots in the inner spiral could be coincidental. (abridged)
We use the full broad-band XMM-Newton EPIC data to examine the X-ray spectrum of the nearby Seyfert 2 galaxy NGC 1068, previously shown to be complex with the X-ray continuum being a sum of components reflected/scattered from cold (neutral) and warm
We present both phenomenological and more physical photoionization models of the Chandra HETG spectra of the Seyfert-1 AGN NGC 4051. We detect 40 absorption and emission lines, encompassing highly ionized charge states from O, Ne, Mg, Si, S and the F
(abridged) Based on observations of the Seyfert nucleus in NGC1068 with ASCA, RXTE and BeppoSAX, we report the discovery of a flare (increase in flux by a factor of ~1.6) in the 6.7 keV Fe K line component between observations obtained 4 months apart
We present dynamical models based on a study of high-resolution long-slit spectra of the narrow-line region (NLR) in NGC 1068 obtained with the Space Telescope Imaging Spectrograph (STIS) aboard The Hubble Space Telescope (HST). The dynamical models
Deep optical imaging with both Hyper Suprime-Cam and Suprime-Cam on the 8.2 m Subaru Telescope reveals a number of outer faint structures around the archetypical Seyfert galaxy NGC 1068 (M 77). We find three ultra diffuse objects (UDOs) around NGC 10