ﻻ يوجد ملخص باللغة العربية
Non-coding RNA molecules fold into precise base pairing patterns to carry out critical roles in genetic regulation and protein synthesis. We show here that coupling systematic mutagenesis with high-throughput SHAPE chemical mapping enables accurate base pair inference of domains from ribosomal RNA, ribozymes, and riboswitches. For a six-RNA benchmark that challenged prior chemical/computational methods, this mutate-and-map strategy gives secondary structures in agreement with crystallographic data (2 % error rates), including a blind test on a double-glycine riboswitch. Through modeling of partially ordered RNA states, the method enables the first test of an interdomain helix-swap hypothesis for ligand-binding cooperativity in a glycine riboswitch. Finally, the mutate-and-map data report on tertiary contacts within non-coding RNAs; coupled with the Rosetta/FARFAR algorithm, these data give nucleotide-resolution three-dimensional models (5.7 {AA} helix RMSD) of an adenine riboswitch. These results highlight the promise of a two-dimensional chemical strategy for inferring the secondary and tertiary structures that underlie non-coding RNA behavior.
In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP) coupled with random attachment and detachment of particles (Langmuir kinetics) in both lanes under open boundary conditions. Our model can describe the directed mo
Population pharmacokinetic (PK) modeling methods can be statistically classified as either parametric or nonparametric (NP). Each classification can be divided into maximum likelihood (ML) or Bayesian (B) approaches. In this paper we discuss the nonp
The conformational kinetics of enzymes can be reliably revealed when they are governed by Markovian dynamics. Hidden Markov Models (HMMs) are appropriate especially in the case of conformational states that are hardly distinguishable. However, the ev
This work introduces a number of algebraic topology approaches, such as multicomponent persistent homology, multi-level persistent homology and electrostatic persistence for the representation, characterization, and description of small molecules and
Scaffold based drug discovery (SBDD) is a technique for drug discovery which pins chemical scaffolds as the framework of design. Scaffolds, or molecular frameworks, organize the design of compounds into local neighborhoods. We formalize scaffold base