ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-standard morphological relic patterns in the cosmic microwave background

90   0   0.0 ( 0 )
 نشر من قبل Joseph Zuntz
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Statistically anomalous signals in the microwave background have been extensively studied in general in multipole space, and in real space mainly for circular and other simple patterns. In this paper we search for a range of non-trivial patterns in the temperature data from WMAP 7-year observations. We find a very significant detection of a number of such features and discuss their consequences for the essential character of the cosmos.

قيم البحث

اقرأ أيضاً

We compute the spectral distortions of the Cosmic Microwave Background (CMB) polarization induced by non-linear effects in the Compton interactions between CMB photons and cold intergalactic electrons. This signal is of the $y$-type and is dominated by contributions arising from the reionized era. We stress that it is not shadowed by the thermal SZ effect which has no equivalent for polarization. We decompose its angular dependence into $E$- and $B$-modes, and we calculate the corresponding power spectra, both exactly and using a suitable Limber approximation that allows a simpler numerical evaluation. We find that $B$-modes are of the same order of magnitude as $E$-modes. Both spectra are relatively flat, peaking around $ell=280$, and their overall amplitude is directly related to the optical depth to reionization. Moreover, we find this effect to be one order of magnitude larger than the non-linear kinetic Sunyaev-Zeldovich effect in galaxy clusters. Finally, we discuss how to improve the detectability of our signal by cross-correlating it with other quantities sourced by the flow of intergalactic electrons.
We estimate the B-polarisation induced in the Cosmic Microwave Background by the non-linear evolution of density perturbations. Using the second-order Boltzmann code SONG, our analysis incorporates, for the first time, all physical effects at recombi nation. We also include novel contributions from the redshift part of the Boltzmann equation and from the bolometric definition of the temperature in the presence of polarisation. The remaining line-of-sight terms (lensing and time-delay) have previously been studied and must be calculated non-perturbatively. The intrinsic B-mode polarisation is present independent of the initial conditions and might contaminate the signal from primordial gravitational waves. We find this contamination to be comparable to a primordial tensor-to-scalar ratio of $rsimeq10^{-7}$ at the angular scale $ellsimeq100,$, where the primordial signal peaks, and $rsimeq 5 cdot 10^{-5}$ at $ellsimeq700,$, where the intrinsic signal peaks. Therefore, we conclude that the intrinsic B-polarisation from second-order effects is not likely to contaminate future searches of primordial gravitational waves.
Primordial magnetic fields will generate non-Gaussian signals in the cosmic microwave background (CMB) as magnetic stresses and the temperature anisotropy they induce depend quadratically on the magnetic field. We compute a new measure of magnetic no n-Gaussianity, the CMB trispectrum, on large angular scales, sourced via the Sachs-Wolfe effect. The trispectra induced by magnetic energy density and by magnetic scalar anisotropic stress are found to have typical magnitudes of approximately a few times 10^{-29} and 10^{-19}, respectively. Observational limits on CMB non-Gaussianity from WMAP data allow us to conservatively set upper limits of a nG, and plausibly sub-nG, on the present value of the primordial cosmic magnetic field. This represents the tightest limit so far on the strength of primordial magnetic fields, on Mpc scales, and is better than limits from the CMB bispectrum and all modes in the CMB power spectrum. Thus, the CMB trispectrum is a new and more sensitive probe of primordial magnetic fields on large scales.
STPpol, POLARBEAR and BICEP2 have recently measured the cosmic microwave background (CMB) B-mode polarization in various sky regions of several tens of square degrees and obtained BB power spectra in the multipole range 20-3000, detecting the compone nts due to gravitational lensing and to inflationary gravitational waves. We analyze jointly the results of these three experiments and propose modifications of their analysis of the spectra to include in the model, in addition to the gravitational lensing and the inflationary gravitational waves components, also the effects induced by the cosmic polarization rotation (CPR), if it exists within current upper limits. Although in principle our analysis would lead also to new constraints on CPR, in practice these can only be given on its fluctuations <{delta}{alpha}^2>, since constraints on its mean angle are inhibited by the de-rotation which is applied by current CMB polarization experiments, in order to cope with the insufficient calibration of the polarization angle. The combined data fits from all three experiments (with 29% CPR-SPTpol correlation, depending on theoretical model) gives constraint <{delta}{alpha}^2>^1/2 < 27.3 mrad (1.56{deg}) with r = 0.194 pm 0.033. These results show that the present data are consistent with no CPR detection and the constraint on CPR fluctuation is about 1.5{deg}. This method of constraining the cosmic polarization rotation is new, is complementary to previous tests, which use the radio and optical/UV polarization of radio galaxies and the CMB E-mode polarization, and adds a new constraint for the sky areas observed by SPTpol, POLARBEAR and BICEP2.
A number of theoretically well-motivated additions to the standard cosmological model predict weak signatures in the form of spatially localized sources embedded in the cosmic microwave background (CMB) fluctuations. We present a hierarchical Bayesia n statistical formalism and a complete data analysis pipeline for testing such scenarios. We derive an accurate approximation to the full posterior probability distribution over the parameters defining any theory that predicts sources embedded in the CMB, and perform an extensive set of tests in order to establish its validity. The approximation is implemented using a modular algorithm, designed to avoid a posteriori selection effects, which combines a candidate-detection stage with a full Bayesian model-selection and parameter-estimation analysis. We apply this pipeline to theories that predict cosmic textures and bubble collisions, extending previous analyses by using: (1) adaptive-resolution techniques, allowing us to probe features of arbitrary size, and (2) optimal filters, which provide the best possible sensitivity for detecting candidate signatures. We conclude that the WMAP 7-year data do not favor the addition of either cosmic textures or bubble collisions to the standard cosmological model, and place robust constraints on the predicted number of such sources. The expected numbers of bubble collisions and cosmic textures on the CMB sky within our detection thresholds are constrained to be fewer than 4.0 and 5.2 at 95% confidence, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا