ترغب بنشر مسار تعليمي؟ اضغط هنا

Refit to numerically problematic UMIST reaction rate coefficients

241   0   0.0 ( 0 )
 نشر من قبل Markus Roellig
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف M. Rollig




اسأل ChatGPT حول البحث

Aims. Chemical databases such as the UMIST Database for Astrochemistry (UDFA) are indispensable in the numerical modeling of astrochemical networks. Several of the listed reactions in the UDFA have properties that are problematic in numerical computations: Some are parametrized in a way that leads to extremely divergent behavior for low kinetic temperatures. Other reactions possess multiple entries that are each valid in a different temperature regime, but have no smooth transition when switching from one to another. Numerically, this introduces many difficulties.We present corrected parametrizations for these sets of reactions in the UDFA06 database. Methods. From the tabulated parametrization in UDFA, we created artificial data points and used a Levenberg-Marquardt algorithm to find a set of improved fit parameters without divergent behavior for low temperatures. For reactions with multiple entries in the database that each possess a different temperature regime, we present one joint parametrization that is designed to be valid over the whole cumulative temperature range of all individual reactions. Results. We show that it is possible to parametrize numerically problematic reactions from UDFA in a form that avoids low temperature divergence. Additionally, we demonstrate that it is possible to give a collective parametrization for reaction rate coefficients of reactions with multiple entries in UDFA. We present these new fitted values in tabulated form.

قيم البحث

اقرأ أيضاً

vant Hoff equation relates equilibrium constant $K$ of a chemical reaction to temperature $T$. Though the vant Hoff plot ($ln K$ vs $1/T$) is linear, it is nonlinear for certain chemical reactions. In this work we attribute such observations to virial coefficients.
29 - J.R. Dorfman , P. Gaspard 1994
The chaotic scattering theory is here extended to obtain escape-rate expressions for the transport coefficients appropriate for a simple classical fluid, or for a chemically reacting system. This theory allows various transport coefficients such as t he coefficients of viscosity, thermal conductivity, etc., to be expressed in terms of the positive Lyapunov exponents and Kolmogorov-Sinai entropy of a set of phase space trajectories that take place on an appropriate fractal repeller. This work generalizes the previous results of Gaspard and Nicolis for the coefficient of diffusion of a particle moving in a fixed array of scatterers.
Context. Monte Carlo methods can be used to evaluate the uncertainty of a reaction rate that arises from many uncertain nuclear inputs. However, until now no attempt has been made to find the effect of correlated energy uncertainties in input resonan ce parameters. Aims. To investigate the impact of correlated energy uncertainties on reaction rates. Methods. Using a combination of numerical and Monte Carlo variation of resonance energies, the effect of correlations are investigated. Five reactions are considered: two fictional, illustrative cases and three reactions whose rates are of current interest. Results. The effect of correlations in resonance energies depends on the specific reaction cross section and temperatures considered. When several resonances contribute equally to a reaction rate, and are located either side of the Gamow peak, correlations between their energies dilute their effect on reaction rate uncertainties. If they are both located above or below the maximum of the Gamow peak, however, correlations between their resonance energies can increase the reaction rate uncertainties. This effect can be hard to predict for complex reactions with wide and narrow resonances contributing to the reaction rate.
The recently proposed rSCAN functional [J. Chem. Phys. 150, 161101 (2019)] is a regularized form of the SCAN functional [Phys. Rev. Lett. 115, 036402 (2015)] that improves SCANs numerical performance at the expense of breaking constraints known from the exact exchange-correlation functional. We construct a new meta-generalized gradient approximation by restoring exact constraint adherence to rSCAN. The resulting functional maintains rSCANs numerical performance while restoring the transferable accuracy of SCAN.
We analyze a theoretical model for energy and electron transfer in an artificial photosynthetic system. The photosystem consists of a molecular triad (i.e., with a donor, a photosensitive unit, and an acceptor) coupled to four accessory light-harvest ing antennas pigments. The excitation energy transfer from the antennas to the artificial reaction center (the molecular triad) is here described by the F{o}rster mechanism. We consider two different kinds of arrangements of the accessory light-harvesting pigments around the reaction center. The first arrangement allows direct excitation transfer to the reaction center from all the surrounding pigments. The second configuration transmits energy via a cascade mechanism along a chain of light-harvesting chromophores, where only one chromophore is connected to the reaction center. At first sight, it would appear that the star-shaped configuration, with all the antennas directly coupled to the photosensitive center, would be more efficient. However, we show that the artificial photosynthetic system using the cascade energy transfer absorbs photons in a broader wavelength range and converts their energy into electricity with a higher efficiency than the system based on direct couplings between all the antenna chromophores and the reaction center.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا