ترغب بنشر مسار تعليمي؟ اضغط هنا

Long period variables and mass loss in the globular clusters NGC 362 and NGC 2808

254   0   0.0 ( 0 )
 نشر من قبل Thomas Lebzelter
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The pulsation periods of long period variables (LPVs) depend on their mass and helium abundance as well as on their luminosity and metal abundance. Comparison of the observed periods of LPVs in globular clusters with models is capable of revealing the amount of mass lost on the giant branch and the helium abundance.} {We aim to determine the amount of mass loss that has occurred on the giant branches of the low metallicity globular clusters NGC 362 and NGC 2808. We also aim to see if the LPVs in NGC 2808 can tell us about helium abundance variations in this cluster.} We have used optical monitoring of NGC 362 and NGC 2808 to determine periods for the LPVs in these clusters. We have made linear pulsation models for the pulsating stars in these clusters taking into account variations in mass and helium abundance. Reliable periods have been determined for 11 LPVs in NGC 362 and 15 LPVs in NGC 2808. Comparison of the observed variables with models in the logP - K diagram shows that mass loss of ~0.15-0.2 Msun is required on the first giant branch in these clusters, in agreement with estimates from other methods. In NGC 2808, there is evidence that a high helium abundance of Y~0.4 is required to explain the periods of several of the LPVs. It would be interesting to determine periods for LPVs in other Galactic globular clusters where a helium abundance variation is suspected to see if the completely independent test for a high helium abundance provided by the LPVs can confirm the high helium abundance estimates.



قيم البحث

اقرأ أيضاً

The presence of multiple populations in globular clusters has been well established thanks to high-resolution spectroscopy. It is widely accepted that distinct populations are a consequence of different stellar generations: intra-cluster pollution ep isodes are required to produce the peculiar chemistry observed in almost all clusters. Unfortunately, the progenitors responsible have left an ambiguous signature and their nature remains unresolved. To constrain the candidate polluters, we have measured lithium and aluminium abundances in more than 180 giants across three systems: NGC~1904, NGC~2808, and NGC~362. The present investigation along with our previous analysis of M12 and M5 affords us the largest database of simultaneous determinations of Li and Al abundances. Our results indicate that Li production has occurred in each of the three clusters. In NGC~362 we detected an M12-like behaviour, with first and second-generation stars sharing very similar Li abundances favouring a progenitor that is able to produce Li, such as AGB stars. Multiple progenitor types are possible in NGC~1904 and NGC~2808, as they possess both an intermediate population comparable in lithium to the first generation stars and also an extreme population, that is enriched in Al but depleted in Li. A simple dilution model fails in reproducing this complex pattern. Finally, the internal Li variation seems to suggest that the production efficiency of this element is a function of the clusters mass and metallicity - low-mass or relatively metal-rich clusters are more adept at producing Li.
129 - Martha L. Boyer 2009
We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the IRAC and MIPS cameras onboard the Spitzer Space Telescope as pa rt of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the Red Giant Branch that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the Red Giant Branch. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0(+2.0/-1.2) x 10^-9 solar masses per year, corresponding to a gas mass-loss rate of 8.6(+5.6/-3.4) x 10^-6 solar masses per year, assuming [Fe/H] = -1.16. This mass loss is in addition to any dust-less mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in omega Centauri.
Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binarie s, their progeny, and other stellar X-ray source populations deep into the cores of globular clusters. Our Chandra X-ray images of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are likely cluster members. Using HST color-magnitude and color-color diagrams, we quantitatively consider the optical content of the NGC 362 Chandra X-ray error circles, especially to assess and identify the compact binary population in this condensed-core globular cluster. Despite residual significant crowding in both X-rays and optical, we identify an excess population of H{alpha}-emitting objects that is statistically associated with the Chandra X-ray sources. The X-ray and optical characteristics suggest that these are mainly cataclysmic variables, but we also identify a candidate quiescent low mass X-ray binary. A potentially interesting and largely unanticipated use of observations such as these may be to help constrain the macroscopic dynamic state of globular clusters.
We report on the results of a long time photometric monitoring of the two metal poor Galactic globular clusters M22 and IC4499 searching for long period variables (LPVs) on the upper giant branch. We detected 22 new LPVs in the field of M22 and confi rmed the variability of six known variables. Periods could be determined for 16 of them. In the field of IC4499 we detected and characterized 2 new LPVs. Cluster membership is evaluated for all the variables based on photometry and literature data, and the location of the stars in logP-K-diagram is discussed. Our findings give further support to the presence of LPVs at metallicities as low as [Fe/H]=-1.7. The luminosity range where LPVs are found in metal poor clusters is lower than in more metal rich clusters.
The field of the globular cluster NGC 362 was monitored between 1997 and 2015 in a search for variable stars. BV light curves were obtained for 151 periodic or likely periodic variables, over a hundred of which are new detections. Twelve newly detect ed variables are proper motion members of the cluster: two SX Phe and two RR Lyr pulsators, one contact binary, three detached or semi-detached eclipsing binaries, and four spotted variables. The most interesting objects among these are the binary blue straggler V20 with an asymmetric light curve, and the 8.1 d semidetached binary V24 located on the red giant branch of NGC 362, which is a Chandra X-ray source. We also provide substantial new data for 24 previously known variables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا