ترغب بنشر مسار تعليمي؟ اضغط هنا

Dust Production and Mass Loss in the Galactic Globular Cluster NGC 362

109   0   0.0 ( 0 )
 نشر من قبل Martha Boyer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Martha L. Boyer




اسأل ChatGPT حول البحث

We investigate dust production and stellar mass loss in the Galactic globular cluster NGC 362. Due to its close proximity to the Small Magellanic Cloud (SMC), NGC 362 was imaged with the IRAC and MIPS cameras onboard the Spitzer Space Telescope as part of the Surveying the Agents of Galaxy Evolution (SAGE-SMC) Spitzer Legacy program. We detect several cluster members near the tip of the Red Giant Branch that exhibit infrared excesses indicative of circumstellar dust and find that dust is not present in measurable quantities in stars below the tip of the Red Giant Branch. We modeled the spectral energy distribution (SED) of the stars with the strongest IR excess and find a total cluster dust mass-loss rate of 3.0(+2.0/-1.2) x 10^-9 solar masses per year, corresponding to a gas mass-loss rate of 8.6(+5.6/-3.4) x 10^-6 solar masses per year, assuming [Fe/H] = -1.16. This mass loss is in addition to any dust-less mass loss that is certainly occurring within the cluster. The two most extreme stars, variables V2 and V16, contribute up to 45% of the total cluster dust-traced mass loss. The SEDs of the more moderate stars indicate the presence of silicate dust, as expected for low-mass, low-metallicity stars. Surprisingly, the SED shapes of the stars with the strongest mass-loss rates appear to require the presence of amorphous carbon dust, possibly in combination with silicate dust, despite their oxygen-rich nature. These results corroborate our previous findings in omega Centauri.



قيم البحث

اقرأ أيضاً

The pulsation periods of long period variables (LPVs) depend on their mass and helium abundance as well as on their luminosity and metal abundance. Comparison of the observed periods of LPVs in globular clusters with models is capable of revealing th e amount of mass lost on the giant branch and the helium abundance.} {We aim to determine the amount of mass loss that has occurred on the giant branches of the low metallicity globular clusters NGC 362 and NGC 2808. We also aim to see if the LPVs in NGC 2808 can tell us about helium abundance variations in this cluster.} We have used optical monitoring of NGC 362 and NGC 2808 to determine periods for the LPVs in these clusters. We have made linear pulsation models for the pulsating stars in these clusters taking into account variations in mass and helium abundance. Reliable periods have been determined for 11 LPVs in NGC 362 and 15 LPVs in NGC 2808. Comparison of the observed variables with models in the logP - K diagram shows that mass loss of ~0.15-0.2 Msun is required on the first giant branch in these clusters, in agreement with estimates from other methods. In NGC 2808, there is evidence that a high helium abundance of Y~0.4 is required to explain the periods of several of the LPVs. It would be interesting to determine periods for LPVs in other Galactic globular clusters where a helium abundance variation is suspected to see if the completely independent test for a high helium abundance provided by the LPVs can confirm the high helium abundance estimates.
The presence of multiple populations in globular clusters has been well established thanks to high-resolution spectroscopy. It is widely accepted that distinct populations are a consequence of different stellar generations: intra-cluster pollution ep isodes are required to produce the peculiar chemistry observed in almost all clusters. Unfortunately, the progenitors responsible have left an ambiguous signature and their nature remains unresolved. To constrain the candidate polluters, we have measured lithium and aluminium abundances in more than 180 giants across three systems: NGC~1904, NGC~2808, and NGC~362. The present investigation along with our previous analysis of M12 and M5 affords us the largest database of simultaneous determinations of Li and Al abundances. Our results indicate that Li production has occurred in each of the three clusters. In NGC~362 we detected an M12-like behaviour, with first and second-generation stars sharing very similar Li abundances favouring a progenitor that is able to produce Li, such as AGB stars. Multiple progenitor types are possible in NGC~1904 and NGC~2808, as they possess both an intermediate population comparable in lithium to the first generation stars and also an extreme population, that is enriched in Al but depleted in Li. A simple dilution model fails in reproducing this complex pattern. Finally, the internal Li variation seems to suggest that the production efficiency of this element is a function of the clusters mass and metallicity - low-mass or relatively metal-rich clusters are more adept at producing Li.
We have serendipitously identified the first lithium-rich giant star located close to the red giant branch bump in a globular cluster. Through intermediate-resolution FLAMES spectra we derived a lithium abundance of A(Li)=2.55 (assuming local thermod ynamical equilibrium), which is extremely high considering the stars evolutionary stage. Kinematic and photometric analysis confirm the object as a member of the globular cluster NGC 362. This is the fourth Li-rich giant discovered in a globular cluster but the only one known to exist at a luminosity close to the bump magnitude. The three previous detections are clearly more evolved, located close to, or beyond the tip of their red giant branch. Our observations are able to discard the accretion of planets/brown dwarfs, as well as an enhanced mass-loss mechanism as a formation channel for this rare object. Whilst the star sits just above the cluster bump luminosity, its temperature places it towards the blue side of the giant branch in the colour-magnitude diagram. We require further dedicated observations to unambiguously identify the star as a red giant: we are currently unable to confirm whether Li production has occurred at the bump of the luminosity function or if the star is on the pre zero-age horizontal branch. The latter scenario provides the opportunity for the star to have synthesised Li rapidly during the core helium flash or gradually during its red giant branch ascent via some extra mixing process.
We present chemical abundances for 17 elements in a sample of 11 red giant branch stars in NGC 6362 from UVES spectra. NGC 6362 is one of the least massive globulars where multiple populations have been detected, yet its detailed chemical composition has not been investigated so far. NGC 6362 turns out to be a metal-intermediate ([Fe/H]=-1.07pm0.01 dex) cluster, with its alpha- and Fe-peak elements content compatible with that observed in clusters with similar metallicity. It also displays an enhancement in its s-process element abundances. Among the light elements involved in the multiple populations phenomenon, only [Na/Fe] shows star-to-star variations, while [Al/Fe] and [Mg/Fe] do not show any evidence for abundance spreads. A differential comparison with M4, a globular cluster with similar mass and metallicity, reveals that the two clusters share the same chemical composition. This finding suggests that NGC 6362 is indeed a regular cluster, formed from gas that has experienced the same chemical enrichment of other clusters with similar metallicity.
Highly sensitive and precise X-ray imaging from Chandra, combined with the superb spatial resolution of HST optical images, dramatically enhances our empirical understanding of compact binaries such as cataclysmic variables and low mass X-ray binarie s, their progeny, and other stellar X-ray source populations deep into the cores of globular clusters. Our Chandra X-ray images of the globular cluster NGC 362 reveal 100 X-ray sources, the bulk of which are likely cluster members. Using HST color-magnitude and color-color diagrams, we quantitatively consider the optical content of the NGC 362 Chandra X-ray error circles, especially to assess and identify the compact binary population in this condensed-core globular cluster. Despite residual significant crowding in both X-rays and optical, we identify an excess population of H{alpha}-emitting objects that is statistically associated with the Chandra X-ray sources. The X-ray and optical characteristics suggest that these are mainly cataclysmic variables, but we also identify a candidate quiescent low mass X-ray binary. A potentially interesting and largely unanticipated use of observations such as these may be to help constrain the macroscopic dynamic state of globular clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا