ﻻ يوجد ملخص باللغة العربية
Relaxed, massive galactic objects have been identified at redshifts z = 4;5; and 6 in hydrodynamical simulations run in a large cosmological volume. This allowed us to analyze the assembly patterns of the high mass end of the galaxy distribution at these high zs, by focusing on their structural and dynamical properties. Our simulations indicate that massive objects at high redshift already follow certain scaling relations. These relations define virial planes at the halo scale, whereas at the galactic scale they define intrinsic dynamical planes that are, however, tilted relative to the virial plane. Therefore, we predict that massive galaxies must lie on fundamental planes from their formation. We briefly discuss the physical origin of the tilt in terms the physical processes underlying massive galaxy formation at high z, in the context of a two-phase galaxy formation scenario. Specifically, we have found that it lies on the different behavior of the gravitationally heated gas as compared with cold gas previously involved in caustic formation, and the mass dependence of the energy available to heat the gas.
We present an analysis of ~60 000 massive (stellar mass M_star > 10^{11} M_sun) galaxies out to z = 1 drawn from 55.2 deg2 of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) and the Sloan Digital Sky Survey (SDSS) II S
We study the stellar mass assembly of the Spiderweb Galaxy (MRC 1138-262), a massive z = 2.2 radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties ar
We present the recent merger history of massive galaxies in a spectroscopically-confirmed proto-cluster at z=1.62. Using HST WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we select clust
In these proceedings, we summarize recent results from our SINS VLT/SINFONI integral-field survey, focusing on the 52 detected UV/optically-selected star-forming galaxies at z~2. Our H-alpha emission-line imaging and kinematic data of these systems i
We have analysed the growth of Brightest Group Galaxies and Brightest Cluster Galaxies (BGGs/BCGs) over the last 3 billion years using a large sample of 883 galaxies from the Galaxy And Mass Assembly Survey. By comparing the stellar mass of BGGs and