ترغب بنشر مسار تعليمي؟ اضغط هنا

Witnessing the active assembly phase of massive galaxies since z = 1

187   0   0.0 ( 0 )
 نشر من قبل Yoshiki Matsuoka
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an analysis of ~60 000 massive (stellar mass M_star > 10^{11} M_sun) galaxies out to z = 1 drawn from 55.2 deg2 of the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS) and the Sloan Digital Sky Survey (SDSS) II Supernova Survey. This is by far the largest survey of massive galaxies with robust mass estimates, based on infrared (K-band) photometry, reaching to the Universe at about half its present age. We find that the most massive (M_star > 10^{11.5} M_sun) galaxies have experienced rapid growth in number since z = 1, while the number densities of the less massive systems show rather mild evolution. Such a hierarchical trend of evolution is consistent with the predictions of the current semi-analytic galaxy formation model based on Lambda CDM theory. While the majority of massive galaxies are red-sequence populations, we find that a considerable fraction of galaxies are blue star-forming galaxies. The blue fraction is smaller in more massive systems and decreases toward the local Universe, leaving the red, most massive galaxies at low redshifts, which would support the idea of active bottom-up formation of these populations during 0 < z < 1.



قيم البحث

اقرأ أيضاً

We present a clustering analysis of ~60,000 massive (stellar mass Mstar > 10^{11} Msun) galaxies out to z = 1 drawn from 55.2 deg2 of the UKIRT Infrared Deep Sky Survey (UKIDSS) and the Sloan Digital Sky Survey (SDSS) II Supernova Survey. Strong clus tering is detected for all the subsamples of massive galaxies characterized by different stellar masses (Mstar = 10^{11.0-11.5} Msun, 10^{11.5-12.0} Msun) or rest-frame colors (blue: U - V < 1.0, red: U - V > 1.0). We find that more mature (more massive or redder) galaxies are more clustered, which implies that more mature galaxies have started stellar-mass assembly earlier within the highly-biased region where the structure formation has also started earlier. By means of halo occupation distribution (HOD) models fitted to the observed angular correlation function, we infer the properties of the underlying host dark halos. We find that the estimated bias factors and host halo masses are systematically larger for galaxies with larger stellar masses, which is consistent with the general agreement that the capability of hosting massive galaxies depends strongly on halo mass. The estimated effective halo masses are ~10^{14} Msun, which gives the stellar-mass to halo-mass ratios of ~0.003. The observed evolution of bias factors indicates rapid evolution of spatial distributions of cold dark matter relative to those traced by the massive galaxies, while the transition of host halo masses might imply that the fractional mass growth rate of halos is less than those of stellar systems. The inferred halo masses and high fractions of central galaxies indicate that the massive galaxies in the current sample are possibly equivalent to central galaxies of galaxy clusters.
110 - Kevin Bundy 2009
Using deep infrared observations conducted with the MOIRCS on the Subaru Telescope in GOODS-N combined with public surveys in GOODS-S, we investigate the dependence on stellar mass, M_*, and galaxy type of the close pair fraction (5 kpc < r < 20 kpc) and implied merger rate. In common with some recent studies we find that the fraction of paired systems that could result in major mergers is low (~4%) and does not increase significantly with redshift to z~1.2, with (1+z)^{1.6 pm 1.6}. Our key finding is that massive galaxies with M_* > 1E11 Msun are more likely to host merging companions than less massive systems (M_* ~ 1E10 Msun). We find evidence for a higher pair fraction for red, spheroidal hosts compared to blue, late-type systems, in line with expectations based on clustering at small scales. So-called dry mergers between early-type galaxies represent nearly 50% of close pairs with M_* > 3E10 Msun at z~0.5, but less than 30% at z~1. This result can be explained by the increasing abundance of red, early-type galaxies at these masses. We compare the volumetric merger rate of galaxies with different masses to mass-dependent trends in galaxy evolution, finding that major mergers cannot fully account for the formation of spheroidal galaxies since z~1. In terms of mass assembly, major mergers contribute little to galaxy growth below M_* ~ 3E10 Msun but are more significant among galaxies with M_* > 1E11 Msun, 30% of which have undergone mostly dry mergers over the observed redshift range. Overall, the relatively more rapid coalescence of high mass galaxies mirrors the expected hierarchical growth of halos and is consistent with recent model predictions, even if the downsizing of star formation and morphological evolution involves additional physical processes.
We study the growth of massive galaxies from z=2 to the present using data from the NEWFIRM Medium Band Survey. The sample is selected at a constant number density of n=2x10^-4 Mpc^-3, so that galaxies at different epochs can be compared in a meaning ful way. We show that the stellar mass of galaxies at this number density has increased by a factor of ~2 since z=2, following the relation log(M)=11.45-0.15z. In order to determine at what physical radii this mass growth occurred we construct very deep stacked rest-frame R-band images at redshifts z=0.6, 1.1, 1.6, and 2.0. These image stacks of typically 70-80 galaxies enable us to characterize the stellar distribution to surface brightness limits of ~28.5 mag/arcsec^2. We find that massive galaxies gradually built up their outer regions over the past 10 Gyr. The mass within a radius of r=5 kpc is nearly constant with redshift whereas the mass at 5-75 kpc has increased by a factor of ~4 since z=2. Parameterizing the surface brightness profiles we find that the effective radius and Sersic n parameter evolve as r_e~(1+z)^-1.3 and n~(1+z)^-1.0 respectively. The data demonstrate that massive galaxies have grown mostly inside-out, assembling their extended stellar halos around compact, dense cores with possibly exponential radial density distributions. Comparing the observed mass evolution to the average star formation rates of the galaxies we find that the growth is likely dominated by mergers, as in-situ star formation can only account for ~20% of the mass build-up from z=2 to z=0. The main uncertainties in this study are possible redshift-dependent systematic errors in the total stellar masses and the conversion from light-weighted to mass-weighted radial profiles.
Recent reports suggest that elliptical galaxies have increased their size dramatically over the last ~8 Gyr. This result points to a major re-think of the processes dominating the latetime evolution of galaxies. In this paper we present the first est imates for the scale sizes of brightest cluster galaxies (BCGs) in the redshift range 0.8 < z < 1.3 from an analysis of deep Hubble Space Telescope imaging, comparing to a well matched local sample taken from the Local Cluster Substructure Survey at z ~ 0.2. For a small sample of 5 high redshift BCGs we measure half-light radii ranging from 14 - 53 kpc using de Vaucuoleurs profile fits, with an average determined from stacking of 32.1 pm 2.5 kpc compared to a value 43.2 pm 1.0 kpc for the low redshift comparison sample. This implies that the scale sizes of BCGs at z = 1 are ~ 30% smaller than at z = 0.25. Analyses comparing either Sersic or Petrosian radii also indicate little or no evolution between the two samples. The detection of only modest evolution at most out to z = 1 argues against BCGs having undergone the large increase in size reported for massive galaxies since z = 2 and in fact the scale-size evolution of BCGs appears closer to that reported for radio galaxies over a similar epoch. We conclude that this lack of size evolution, particularly when coupled with recent results on the lack of BCG stellar mass evolution, demonstrates that major merging is not an important process in the late time evolution of these systems. The homogeneity and maturity of BCGs at z = 1 continues to challenge galaxy evolution models.
Using new spectroscopic observations obtained as part of the VIMOS Ultra-Deep Survey (VUDS), we perform a systematic search for overdense environments in the early universe ($z>2$) and report here on the discovery of Cl J0227-0421, a massive protoclu ster at $z=3.29$. This protocluster is characterized by both the large overdensity of spectroscopically confirmed members, $delta_{gal}=10.5pm2.8$, and a significant overdensity in photometric redshift members. The halo mass of this protocluster is estimated, by a variety of methods, to be roughly $3times10^{14}$ $mathcal{M}_{odot}$ at $zsim3.3$, which, evolved to $z=0$ results in a halo mass rivaling or exceeding that of the Coma cluster. The properties of 19 spectroscopically confirmed member galaxies are compared with a large sample of VUDS/VVDS galaxies in lower density field environments at similar redshifts. We find tentative evidence for an excess of redder, brighter, and more massive galaxies within the confines of the protocluster relative to the field population, which suggests that we may be observing the beginning of environmentally-induced quenching. The properties of these galaxies are investigated, including a discussion of the brightest protocluster galaxy which appears to be undergoing vigorous coeval nuclear and starburst activity. The remaining member galaxies appear to have characteristics which are largely similar to the field population. Though we find weaker evidence of the suppression of the median star formation rates amongst and differences in stacked spectra of member galaxies with respect to the field, we defer any conclusions of these trends to future work with the ensemble of protostructures that are found in the full VUDS sample.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا