ترغب بنشر مسار تعليمي؟ اضغط هنا

Scattering Lens Resolves sub-100 nm Structures with Visible Light

396   0   0.0 ( 0 )
 نشر من قبل E.G. van Putten
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The smallest structures that conventional lenses are able to optically resolve are of the order of 200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a scanning nano-sized optical focus. With an experimental realization of this lens in gallium phosphide we have succeeded to image gold nanoparticles at 97 nm optical resolution. Our work is the first lens that provides a resolution in the nanometer regime at visible wavelengths.

قيم البحث

اقرأ أيضاً

Sub-100 nm nanomagnets not only are technologically important, but also exhibit complex magnetization reversal behaviors as their dimensions are comparable to typical magnetic domain wall widths. Here we capture magnetic fingerprints of 1 billion Fe nanodots as they undergo a single domain to vortex state transition, using a first-order reversal curve (FORC) method. As the nanodot size increases from 52 nm to 67 nm, the FORC diagrams reveal striking differences, despite only subtle changes in their major hysteresis loops. The 52 nm nanodots exhibit single domain behavior and the coercivity distribution extracted from the FORC distribution agrees well with a calculation based on the measured nanodot size distribution. The 58 and 67 nm nanodots exhibit vortex states, where the nucleation and annihilation of the vortices are manifested as butterfly-like features in the FORC distribution and confirmed by micromagnetic simulations. Furthermore, the FORC method gives quantitative measures of the magnetic phase fractions, and vortex nucleation and annihilation fields.
We demonstrate an ultrahigh-speed optical coherence tomography (OCT) based on a 100 MHz swept source (SS). An all polarization-maintaining figure-9 mode-locked fiber laser is used as the seed laser. After nonlinear spectral expansion in an Erbium-dop ed fiber amplifier, a flat top spectrum with respectively 1-dB and 10-dB bandwidths of 73.7 nm and 106 nm is obtained. The broadband femtosecond pulse is time stretched to a swept signal in a section of dispersion compensation fiber with a total dispersion of -84 ps/nm. With the swept source, the axial resolution of the SS-OCT is measured to be 21 um with a 6 dB sensitivity roll-off length of 3 mm. A tomographic image of an encoding disk and a hard disk jointly rotating at 17,000 rpm was acquired by using the SS-OCT with a high imaging quality.
Magnetic skyrmions are nanometric spin textures of outstanding potential for spintronic applications due to unique features governed by their non-trivial topology. It is well known that skyrmions of definite chirality are stabilized by the Dzyaloshin skii-Moriya exchange interaction (DMI) in bulk non-centrosimmetric materials or ultrathin films with strong spin-orbit coupling in the interface. In this work, we report on the detection of magnetic hedgehog-skyrmions at room temperature in confined systems with neither DMI nor perpendicular magnetic anisotropy. We show that soft magnetic (permalloy) nanodots are able to host non- chiral hedgehog skyrmions that can be further stabilized by the magnetic field arising from the Magnetic Force Microscopy probe. Analytical calculations and micromagnetic simulations confirmed the existence of metastable Neel skyrmions in permalloy nanodots even without external stimuli in a certain size range. Our work implies the existence of a new degree of freedom to create and manipulate skyrmions in soft nanodots. The stabilization of skyrmions in soft magnetic materials opens a possibility to study the skymion magnetization dynamics otherwise limited due to the large damping constant coming from the high spin-orbit coupling in materials with high magnetic anisotropy.
Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) applications including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Historically, such lasers are implemented at the table top scale, using semiconductor lasers stabilized to large optical reference cavities. Photonic integration of high spectral-purity visible light sources will enable experiments to increase in complexity and scale. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. While progress has been made on integrated SBS lasers at telecommunications wavelengths, barriers have existed to translate this performance to the visible, namely the realization of Brillouin-active waveguides in ultra-low optical loss photonics. We have overcome this barrier, demonstrating the first visible light photonic integrated SBS laser, which operates at 674 nm to address the 88Sr+ optical clock transition. To guide the laser design, we use a combination of multi-physics simulation and Brillouin spectroscopy in a 2 meter spiral waveguide to identify the 25.110 GHz first order Stokes frequency shift and 290 MHz gain bandwidth. The laser is implemented in an 8.9 mm radius silicon nitride all-waveguide resonator with 1.09 dB per meter loss and Q of 55.4 Million. Lasing is demonstrated, with an on-chip 14.7 mW threshold, a 45% slope efficiency, and linewidth narrowing as the pump is increased from below threshold to 269 Hz. To illustrate the wavelength flexibility of this design, we also demonstrate lasing at 698 nm, the wavelength for the optical clock transition in neutral strontium. This demonstration of a waveguide-based, photonic integrated SBS laser that operates in the visible, and the reduced size and sensitivity to environmental disturbances, shows promise for diverse AMO applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا