ترغب بنشر مسار تعليمي؟ اضغط هنا

An integrable modification of the critical Chalker-Coddington network model

136   0   0.0 ( 0 )
 نشر من قبل Yacine Ikhlef
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the Chalker-Coddington network model for the Integer Quantum Hall Effect, and examine the possibility of solving it exactly. In the supersymmetric path integral framework, we introduce a truncation procedure, leading to a series of well-defined two-dimensional loop models, with two loop flavours. In the phase diagram of the first-order truncated model, we identify four integrable branches related to the dilute Birman-Wenzl-Murakami braid-monoid algebra, and parameterised by the loop fugacity $n$. In the continuum limit, two of these branches (1,2) are described by a pair of decoupled copies of a Coulomb-Gas theory, whereas the other two branches (3,4) couple the two loop flavours, and relate to an $SU(2)_r times SU(2)_r / SU(2)_{2r}$ Wess-Zumino-Witten (WZW) coset model for the particular values $n= -2cos[pi/(r+2)]$ where $r$ is a positive integer. The truncated Chalker-Coddington model is the $n=0$ point of branch 4. By numerical diagonalisation, we find that its universality class is neither an analytic continuation of the WZW coset, nor the universality class of the original Chalker-Coddington model. It constitutes rather an integrable, critical approximation to the latter.



قيم البحث

اقرأ أيضاً

158 - Keith Slevin , Tomi Ohtsuki 2012
In Ref.1 (Physical Review B 80, 041304(R) (2009)), we reported an estimate of the critical exponent for the divergence of the localization length at the quantum Hall transition that is significantly larger than those reported in the previous publishe d work of other authors. In this paper, we update our finite size scaling analysis of the Chalker-Coddington model and suggest the origin of the previous underestimate by other authors. We also compare our results with the predictions of Lutken and Ross (Physics Letters B 653, 363 (2007)).
134 - Tetsuyuki Ochiai 2015
We present the emergence of gapless surface states in a three-dimensional Chalker-Coddington type network model with spatial periodicity. The model consists of a ring network placed on every face of the cubic unit cells in the simple cubic lattice. T he scattering among ring-propagating modes in the adjacent rings is described by the S-matrices, which control possible symmetries of the system. The model maps to a Floquet-Bloch system, and the quasienergy spectrum can exhibit a gapped bulk band structure and gapless surface states. Symmetry properties of the system and robustness of the gapless surface states are explored in comparison to topological crystalline insulator. We also discuss other crystal structures, a gauge symmetry, and a possible optical realization of the network model.
We study transport properties of a Chalker-Coddington type model in the plane which presents asymptotically pure anti-clockwise rotation on the left and clockwise rotation on the right. We prove delocalisation in the sense that the absolutely continu ous spectrum covers the whole unit circle. The result is of topological nature and independent of the details of the model.
We study an asymptotic behavior of the return probability for the critical random matrix ensemble in the regime of strong multifractality. The return probability is expected to show critical scaling in the limit of large time or large system size. Us ing the supersymmetric virial expansion we confirm the scaling law and find analytical expressions for the fractal dimension of the wave functions $d_2$ and the dynamical scaling exponent $mu$. By comparing them we verify the validity of the Chalkers ansatz for dynamical scaling.
We study critical behavior of the diluted 2D Ising model in the presence of disorder correlations which decay algebraically with distance as $sim r^{-a}$. Mapping the problem onto 2D Dirac fermions with correlated disorder we calculate the critical p roperties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a non trivial fixed point which is stable for $0.995<a<2$ and is characterized by the correlation length exponent $ u= 2/a + O((2-a)^3)$. Using bosonization, we also calculate the averaged square of the spin-spin correlation function and find the corresponding critical exponent $eta_2=1/2-(2-a)/4+O((2-a)^2)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا