ترغب بنشر مسار تعليمي؟ اضغط هنا

The solar energetic balance revisited by young solar analogs, helioseismology and neutrinos

175   0   0.0 ( 0 )
 نشر من قبل Sylvaine Turck-Chieze STC
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The energetic balance of the Standard Solar Model (SSM) results from an equilibrium between nuclear energy production, energy transfer, and photospheric emission. In this letter, we derive an order of magnitude of several % for the loss of energy in kinetic energy, magnetic energy, and X or UV radiation during the whole solar lifetime from the observations of the present Sun. We also estimate the mass loss from the observations of young solar analogs which could reach up to 30% of the current mass. We deduce new models of the present Sun, their associated neutrino fluxes, and their internal sound-speed profile. This approach sheds quantitative lights on the disagreement between the sound speed obtained by helioseismology and the sound speed derived from the SSM including the updated photospheric CNO abundances, based on recent observations. We conclude that about 20% of the present discrepancy could come from the incorrect description of the early phases of the Sun, its activity, its initial mass and mass-loss history. This study has obvious consequences on the solar system formation and the early evolution of the closest planets.



قيم البحث

اقرأ أيضاً

Aims: In this paper we focus on the occurrence of glycolaldehyde (HCOCH2OH) in young solar analogs by performing the first homogeneous and unbiased study of this molecule in the Class 0 protostars of the nearby Perseus star forming region. Methods: W e obtained sub-arcsec angular resolution maps at 1.3mm and 1.4mm of glycolaldehyde emission lines using the IRAM Plateau de Bure (PdB) interferometer in the framework of the CALYPSO IRAM large program. Results: Glycolaldehyde has been detected towards 3 Class 0 and 1 Class I protostars out of the 13 continuum sources targeted in Perseus: NGC1333-IRAS2A1, NGC1333-IRAS4A2, NGC1333-IRAS4B1, and SVS13-A. The NGC1333 star forming region looks particularly glycolaldehyde rich, with a rate of occurrence up to 60%. The glycolaldehyde spatial distribution overlaps with the continuum one, tracing the inner 100 au around the protostar. A large number of lines (up to 18), with upper-level energies Eu from 37 K up to 375 K has been detected. We derived column densities > 10^15 cm^-2 and rotational temperatures Trot between 115 K and 236 K, imaging for the first time hot-corinos around NGC1333-IRAS4B1 and SVS13-A. Conclusions: In multiple systems glycolaldehyde emission is detected only in one component. The case of the SVS13-A+B and IRAS4-A1+A2 systems support that the detection of glycolaldehyde (at least in the present Perseus sample) indicates older protostars (i.e. SVS13-A and IRAS4-A2), evolved enough to develop the hot-corino region (i.e. 100 K in the inner 100 au). However, only two systems do not allow us to firmly conclude whether the primary factor leading to the detection of glycolaldehyde emission is the environments hosting the protostars, evolution (e.g. low value of Lsubmm/Lint), or accretion luminosity (high Lint).
The Standard Solar Model (SSM) is no more sufficient to interpret all the observations of the radiative zone obtained with the SoHO satellite. We recall our present knowledge of this internal region and compare the recent results to models beyond the SSM assumptions. Then we discuss the missing processes and quantify some of them in using young analog observations to build a more realistic view of our star. This progress will be useful for solar-like stars observed by COROT and KEPLER.
148 - Aldo Serenelli 2009
We construct updated solar models with different sets of solar abundances, including the most recent determinations by Asplund et al. (2009). The latter work predicts a larger ($sim 10%$) solar metallicity compared to previous measurements by the sam e authors but significantly lower ($sim 25%$) than the recommended value from a decade ago by Grevesse & Sauval (1998). We compare the results of our models with determinations of the solar structure inferred through helioseismology measurements. The model that uses the most recent solar abundance determinations predicts the base of the solar convective envelope to be located at $R_{rm CZ}= 0.724{rm R_odot}$ and a surface helium mass fraction of $Y_{rm surf}=0.231$. These results are in conflict with helioseismology data ($R_{rm CZ}= 0.713pm0.001{rm R_odot}$ and $Y_{rm surf}=0.2485pm0.0035$) at 5$-sigma$ and 11$-sigma$ levels respectively. Using the new solar abundances, we calculate the magnitude by which radiative opacities should be modified in order to restore agreement with helioseismology. We find that a maximum change of $sim 15%$ at the base of the convective zone is required with a smooth decrease towards the core, where the change needed is $sim 5%$. The required change at the base of the convective envelope is about half the value estimated previously. We also present the solar neutrino fluxes predicted by the new models. The most important changes brought about by the new solar abundances are the increase by $sim 10%$ in the predicted $^{13}$N and $^{15}$O fluxes that arise mostly due to the increase in the C and N abundances in the newly determined solar composition.
Convection is the mechanism by which energy is transported through the outermost 30% of the Sun. Solar turbulent convection is notoriously difficult to model across the entire convection zone where the density spans many orders of magnitude. In this issue of PNAS, Hanasoge et al. (2012) employ recent helioseismic observations to derive stringent empirical constraints on the amplitude of large-scale convective velocities in the solar interior. They report an upper limit that is far smaller than predicted by a popular hydrodynamic numerical simulation.
57 - Ch. Rab , M. Padovani , M. Gudel 2019
Anomalies in the abundance measurements of short lived radionuclides in meteorites indicate that the protosolar nebulae was irradiated by a large number of energetic particles ($Egtrsim10,$MeV), often called solar cosmic rays. The particle flux of th e contemporary Sun cannot explain these anomalies, but, similar to mbox{T Tauri} stars, the young Sun was more active and probably produced enough high energy particles. However, the stellar particle (SP) flux of young stars is essentially unknown. We model the impact of high-energy ionization sources on the chemistry of the circumstellar environment (disks and envelopes). The model includes X-ray radiative transfer and makes use of particle transport models to calculate the individual molecular hydrogen ionization rates. We study the impact on the chemistry via the ionization tracers HCO$^+$ and N$_2$H$^+$. We argue that spatially resolved observations of those molecules combined with detailed models allow for disentangling the contribution of the individual high-energy ionization sources and to put constraints on the SP flux in young stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا