ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the stellar energetic particle flux in young solar-like stars

58   0   0.0 ( 0 )
 نشر من قبل Christian Rab
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Anomalies in the abundance measurements of short lived radionuclides in meteorites indicate that the protosolar nebulae was irradiated by a large number of energetic particles ($Egtrsim10,$MeV), often called solar cosmic rays. The particle flux of the contemporary Sun cannot explain these anomalies, but, similar to mbox{T Tauri} stars, the young Sun was more active and probably produced enough high energy particles. However, the stellar particle (SP) flux of young stars is essentially unknown. We model the impact of high-energy ionization sources on the chemistry of the circumstellar environment (disks and envelopes). The model includes X-ray radiative transfer and makes use of particle transport models to calculate the individual molecular hydrogen ionization rates. We study the impact on the chemistry via the ionization tracers HCO$^+$ and N$_2$H$^+$. We argue that spatially resolved observations of those molecules combined with detailed models allow for disentangling the contribution of the individual high-energy ionization sources and to put constraints on the SP flux in young stars.



قيم البحث

اقرأ أيضاً

August 1 to November 15, 2016 period was characterized by the presence of Corotating Interaction Regions (CIRs) and a few weak Coronal Mass Ejections (CMEs) in the heliosphere. In this study we show recurrent energetic electron and proton enhancement s observed near Earth (1 AU) and Mars (1.43-1.38 AU) during this period. The observations near Earth are using data from instruments aboard ACE, SOHO, and SDO whereas those near Mars are by the SEP, SWIA, and MAG instruments aboard MAVEN. During this period, the energetic electron fluxes observed near Earth and Mars showed prominent periodic enhancements over four solar rotations, with major periodicities of ~27 days and ~13 days. Periodic radar blackout/weakening of radar signals at Mars are observed by MARSIS/MEX, associated with these solar energetic electron enhancements. During this period, a weak CME and a High Speed Stream (HSS)-related interplanetary shock could interact with the CIR and enhance energetic proton fluxes near 1.43-1.38 AU, and as a result, ~27 day periodicity in proton fluxes is significantly diminished at 1.43-1.38 AU. These events also cause unexpected impact on the Martian topside ionosphere, such as topside ionospheric depletion and compression observed by LPW and NGIMS onboard MAVEN. These observations are unique not only because of the recurring nature of electron enhancements seen at two vantage points, but also because they reveal unexpected impact of the weak CME and interplanetary shock on the Martian ionosphere, which provide new insight into the impact of CME-HSS interactions on Martian plasma environment.
The stellar magnetic field plays a crucial role in the star internal mechanisms, as in the interactions with its environment. The study of starspots provides information about the stellar magnetic field, and can characterise the cycle. Moreover, the analysis of solar-type stars is also useful to shed light onto the origin of the solar magnetic field. The objective of this work is to characterise the magnetic activity of stars. Here, we studied two solar-type stars Kepler-17 and Kepler-63 using two methods to estimate the magnetic cycle length. The first one characterises the spots (radius, intensity, and location) by fitting the small variations in the light curve of a star caused by the occultation of a spot during a planetary transit. This approach yields the number of spots present in the stellar surface and the flux deficit subtracted from the star by their presence during each transit. The second method estimates the activity from the excess in the residuals of the transit lightcurves. This excess is obtained by subtracting a spotless model transit from the lightcurve, and then integrating all the residuals during the transit. The presence of long term periodicity is estimated in both time series. With the first method, we obtained $P_{rm cycle}$ = 1.12 $pm$ 0.16 yr (Kepler-17) and $P_{rm cycle}$ = 1.27 $pm$ 0.16 yr (Kepler-63), and for the second approach the values are 1.35 $pm$ 0.27 yr and 1.27 $pm$ 0.12 yr, respectively. The results of both methods agree with each other and confirm their robustness.
Solar Orbiter strives to unveil how the Sun controls and shapes the heliosphere and fills it with energetic particle radiation. To this end, its Energetic Particle Detector (EPD) has now been in operation, providing excellent data, for just over a ye ar. EPD measures suprathermal and energetic particles in the energy range from a few keV up to (near-) relativistic energies (few MeV for electrons and about 500 MeV/nuc for ions). We present an overview of the initial results from the first year of operations and we provide a first assessment of issues and limitations. During this first year of operations of the Solar Orbiter mission, EPD has recorded several particle events at distances between 0.5 and 1 au from the Sun. We present dynamic and time-averaged energy spectra for ions that were measured with a combination of all four EPD sensors, namely: the SupraThermal Electron and Proton sensor (STEP), the Electron Proton Telescope (EPT), the Suprathermal Ion Spectrograph (SIS), and the High-Energy Telescope (HET) as well as the associated energy spectra for electrons measured with STEP and EPT. We illustrate the capabilities of the EPD suite using the 10-11 December 2020 solar particle event. This event showed an enrichment of heavy ions as well as $^3$He, for which we also present dynamic spectra measured with SIS. The high anisotropy of electrons at the onset of the event and its temporal evolution is also shown using data from these sensors. We discuss the ongoing in-flight calibration and a few open instrumental issues using data from the 21 July and the 10-11 December 2020 events and give guidelines and examples for the usage of the EPD data. We explain how spacecraft operations may affect EPD data and we present a list of such time periods in the appendix. A list of the most significant particle enhancements as observed by EPT during this first year is also provided.
152 - R. Bucik , D. E. Innes , U. Mall 2013
Using the SIT instrument aboard STEREO we have examined the abundance of the 3He during the ascending phase of solar cycle 24 from January 2010 through December 2012. We report on several cases when 3He-rich solar energetic particle events were succe ssively observed on ACE and STEREO-A with delays consistent with the Carrington rotation rate. In the investigated period ACE and STEREO-A were significantly separated in the heliolongitude corresponding to solar rotation times of 5 to 10 days. We inspect STEREO-A EUV images and use the potential-field source-surface extrapolations together with in-situ magnetic field data to identify responsible solar sources. We find the 3He/4He ratio highly variable in these events and correlated between the spacecraft for the cases with the same connection region on the Sun.
The PAMELA satellite experiment is providing first direct measurements of Solar Energetic Particles (SEPs) with energies from about 80 MeV to several GeV in near-Earth space, bridging the low energy data by other space-based instruments and the Groun d Level Enhancement (GLE) data by the worldwide network of neutron monitors. Its unique observational capabilities include the possibility of measuring the flux angular distribution and thus investigating possible anisotropies. This work reports the analysis methods developed to estimate the SEP energy spectra as a function of the particle pitch-angle with respect to the Interplanetary Magnetic Field (IMF) direction. The crucial ingredient is provided by an accurate simulation of the asymptotic exposition of the PAMELA apparatus, based on a realistic reconstruction of particle trajectories in the Earths magnetosphere. As case study, the results for the May 17, 2012 event are presented.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا