ﻻ يوجد ملخص باللغة العربية
Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the requirement that the interaction vertices contain at most two space-time derivatives of the fields, we investigate the consistent cross-couplings between two collections of tensor fields with the mixed symmetries of the type (3,1) and (2,2). The computations are done with the help of the deformation theory based on a cohomological approach in the context of the antifield-BRST formalism. Our results can be synthesized in: 1. there appear consistent cross-couplings between the two types of field collections at order one and two in the coupling constant such that some of the gauge generators and of the reducibility functions are deformed, and 2. the existence or not of cross-couplings among different fields with the mixed symmetry of the Riemann tensor depends on the indefinite or respectively positive-definite behaviour of the quadratic form defined by the kinetic terms from the free Lagrangian.
Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the requirement that the interaction vertices contain at most two spatiotemporal derivatives of the fields, we investigate t
We formulate Fradkin-Vasiliev type theory of massless higher spin fields in AdS(5). The corresponding action functional describes cubic order approximation to gravitational interactions of bosonic mixed-symmetry fields of a particular hook symmetry t
Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincare invariance of the deformations, combined with the requirement that the interaction vertices contain at most two spatiotemporal derivatives of the fields, we investigate t
We present a construction of $kappa$-deformed complex scalar field theory with the objective of shedding light on the way discrete symmetries and CPT invariance are affected by the deformation. Our starting point is the observation that, in order to
We study stationary black holes in the presence of an external strong magnetic field. In the case where the gravitational backreaction of the magnetic field is taken into account, such an scenario is well described by the Ernst-Wild solution to Einst