ﻻ يوجد ملخص باللغة العربية
Precise near-infrared radial velocimetry enables efficient detection and transit verification of low-mass extrasolar planets orbiting M dwarf hosts, which are faint for visible-wavelength radial velocity surveys. The TripleSpec Exoplanet Discovery Instrument, or TEDI, is the combination of a variable-delay Michelson interferometer and a medium-resolution (R=2700) near-infrared spectrograph on the Palomar 200 Hale Telescope. We used TEDI to monitor GJ 699, a nearby mid-M dwarf, over 11 nights spread across 3 months. Analysis of 106 independent observations reveals a root-mean-square precision of less than 37 m/s for 5 minutes of integration time. This performance is within a factor of 2 of our expected photon-limited precision. We further decompose the residuals into a 33 m/s white noise component, and a 15 m/s systematic noise component, which we identify as likely due to contamination by telluric absorption lines. With further development this technique holds promise for broad implementation on medium-resolution near-infrared spectrographs to search for low-mass exoplanets orbiting M dwarfs, and to verify low-mass transit candidates.
Given that low-mass stars have intrinsically low luminosities at optical wavelengths and a propensity for stellar activity, it is advantageous for radial velocity (RV) surveys of these objects to use near-infrared (NIR) wavelengths. In this work we d
SPIRou is a near-infrared (nIR) spectropolarimeter at the CFHT, covering the YJHK nIR spectral bands ($980-2350,mathrm{nm}$). We describe the development and current status of the SPIRou wavelength calibration in order to obtain precise radial veloci
We demonstrate the ability to measure precise stellar barycentric radial velocities with the dispersed fixed-delay interferometer technique using the Exoplanet Tracker (ET), an instrument primarily designed for precision differential Doppler velocity
The CHIRON optical high-resolution echelle spectrometer was commissioned at the 1.5m telescope at CTIO in 2011. The instrument was designed for high throughput and stability, with the goal of monitoring radial velocities of bright stars with high pre
We describe the design of a low- and medium-resolution spectrograph ( R=300-1300) developed at the Special Astrophysical Observatory of the Russian Academy of Sciences (SAO RAS) for the 1.6-m AZT-33IK telescope of Sayan Observatory of the Institute o