ﻻ يوجد ملخص باللغة العربية
The gauge group is computed explicitly for a family of E_0-semigroups of type II_0 arising from the boundary weight double construction introduced earlier by Jankowski. This family contains many E_0-semigroups which are not cocycle cocycle conjugate to any examples whose gauge groups have been computed earlier. Further results are obtained regarding the classification up to cocycle conjugacy and up to conjugacy for boundary weight doubles $(phi, u)$ in two separate cases: first in the case when $phi$ is unital, invertible and q-pure and $ u$ is any type II Powers weight, and secondly when $phi$ is a unital $q$-positive map whose range has dimension one and $ u(A) = (f, Af)$ for some function f such that $(1-e^{-x})^{1/2}f(x) in L^2(0,infty)$. All E_0-semigroups in the former case are cocycle conjugate to the one arising simply from $ u$, and any two E_0-semigroups in the latter case are cocycle conjugate if and only if they are conjugate.
An E_0-semigroup is called q-pure if it is a CP-flow and its set of flow subordinates is totally ordered by subordination. The range rank of a positive boundary weight map is the dimension of the range of its dual map. Let K be a separable Hilbert sp
We consider families of E_0-semigroups continuously parametrized by a compact Hausdorff space, which are cocycle-equivalent to a given E_0-semigroup beta. When the gauge group of $beta$ is a Lie group, we establish a correspondence between such famil
This paper concerns the structure of the group of local unitary cocycles, also called the gauge group, of an E_0-semigroup. The gauge group of a spatial E_0-semigroup has a natural action on the set of units by operator multiplication. Arveson has ch
We study two classes of operator algebras associated with a unital subsemigroup $P$ of a discrete group $G$: one related to universal structures, and one related to co-universal structures. First we provide connections between universal C*-algebras t
A higher rank numerical semigroup is a positive cone whose seminormalization is isomorphic to the free abelian semigroup. The corresponding nonselfadjoint semigroup algebras are known to provide examples that answer Arvesons Dilation Problem to the n